999 resultados para force transducer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human movement analysis (HMA) aims to measure the abilities of a subject to stand or to walk. In the field of HMA, tests are daily performed in research laboratories, hospitals and clinics, aiming to diagnose a disease, distinguish between disease entities, monitor the progress of a treatment and predict the outcome of an intervention [Brand and Crowninshield, 1981; Brand, 1987; Baker, 2006]. To achieve these purposes, clinicians and researchers use measurement devices, like force platforms, stereophotogrammetric systems, accelerometers, baropodometric insoles, etc. This thesis focus on the force platform (FP) and in particular on the quality assessment of the FP data. The principal objective of our work was the design and the experimental validation of a portable system for the in situ calibration of FPs. The thesis is structured as follows: Chapter 1. Description of the physical principles used for the functioning of a FP: how these principles are used to create force transducers, such as strain gauges and piezoelectrics transducers. Then, description of the two category of FPs, three- and six-component, the signals acquisition (hardware structure), and the signals calibration. Finally, a brief description of the use of FPs in HMA, for balance or gait analysis. Chapter 2. Description of the inverse dynamics, the most common method used in the field of HMA. This method uses the signals measured by a FP to estimate kinetic quantities, such as joint forces and moments. The measures of these variables can not be taken directly, unless very invasive techniques; consequently these variables can only be estimated using indirect techniques, as the inverse dynamics. Finally, a brief description of the sources of error, present in the gait analysis. Chapter 3. State of the art in the FP calibration. The selected literature is divided in sections, each section describes: systems for the periodic control of the FP accuracy; systems for the error reduction in the FP signals; systems and procedures for the construction of a FP. In particular is detailed described a calibration system designed by our group, based on the theoretical method proposed by ?. This system was the “starting point” for the new system presented in this thesis. Chapter 4. Description of the new system, divided in its parts: 1) the algorithm; 2) the device; and 3) the calibration procedure, for the correct performing of the calibration process. The algorithm characteristics were optimized by a simulation approach, the results are here presented. In addiction, the different versions of the device are described. Chapter 5. Experimental validation of the new system, achieved by testing it on 4 commercial FPs. The effectiveness of the calibration was verified by measuring, before and after calibration, the accuracy of the FPs in measuring the center of pressure of an applied force. The new system can estimate local and global calibration matrices; by local and global calibration matrices, the non–linearity of the FPs was quantified and locally compensated. Further, a non–linear calibration is proposed. This calibration compensates the non– linear effect in the FP functioning, due to the bending of its upper plate. The experimental results are presented. Chapter 6. Influence of the FP calibration on the estimation of kinetic quantities, with the inverse dynamics approach. Chapter 7. The conclusions of this thesis are presented: need of a calibration of FPs and consequential enhancement in the kinetic data quality. Appendix: Calibration of the LC used in the presented system. Different calibration set–up of a 3D force transducer are presented, and is proposed the optimal set–up, with particular attention to the compensation of non–linearities. The optimal set–up is verified by experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION. Following anterior thoracoscopic instrumentation and fusion for the treatment of thoracic AIS, implant related complications have been reported as high as 20.8%. Currently the magnitudes of the forces applied to the spine during anterior scoliosis surgery are unknown. The aim of this study was to measure the segmental compressive forces applied during anterior single rod instrumentation in a series of adolescent idiopathic scoliosis patients. METHODS. A force transducer was designed, constructed and retrofitted to a surgical cable compression tool, routinely used to apply segmental compression during anterior scoliosis correction. Transducer output was continuously logged during the compression of each spinal joint, the output at completion converted to an applied compression force using calibration data. The angle between adjacent vertebral body screws was also measured on intra-operative frontal plane fluoroscope images taken both before and after each joint compression. The difference in angle between the two images was calculated as an estimate for the achieved correction at each spinal joint. RESULTS. Force measurements were obtained for 15 scoliosis patients (Aged 11-19 years) with single thoracic curves (Cobb angles 47˚- 67˚). In total, 95 spinal joints were instrumented. The average force applied for a single joint was 540 N (± 229 N)ranging between 88 N and 1018 N. Experimental error in the force measurement, determined from transducer calibration was ± 43 N. A trend for higher forces applied at joints close to the apex of the scoliosis was observed. The average joint correction angle measured by fluoroscope imaging was 4.8˚ (±2.6˚, range 0˚-12.6˚). CONCLUSION. This study has quantified in-vivo, the intra-operative correction forces applied by the surgeon during anterior single rod instrumentation. This data provides a useful contribution towards an improved understanding of the biomechanics of scoliosis correction. In particular, this data will be used as input for developing patient-specific finite element simulations of scoliosis correction surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing. (c) 2007 Acoustical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this preliminary study was to investigate motor cortex (cortical) excitability between a similar fine visuomotor task of varying difficulty. Ten healthy adults (three female, seven male; 20–45 years of age) participated in the study. Participants were instructed to perform a fine visuomotor task by statically abducting their first index finger against a force transducer which displayed the level of force (represented as a marker) on a computer monitor. This marker was to be maintained between two stationary bars, also displayed on the computer monitor. The level of difficulty was increased by amplifying the position of the marker, making the task more difficult to control. Cortical measures of motor evoked potential (MEP) and silent period (SP) duration in first dorsal interosseous (FDI) muscle were obtained using transcranial magnetic stimulation (TMS) while the participant maintained the “easy” or “difficult” static task. An 11.8% increase in MEP amplitude was observed when subjects undertook the “difficult” task, but no differences in MEP latency or SP duration. The results from this preliminary study suggest that cortical excitability increases reflect the demand required to perform tasks requiring greater precision with suggestions for further research discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human central nervous system (CNS) has the ability to modulate its activity during the performance of different movements. Recent evidence, however, suggests that the CNS can also modulate its activity in the same movement but with increased precision during a visuomotor static task. This study aimed to extend on these findings by using transcranial magnetic stimulation (TMS) to measure the CNS during the performance of two visuomotor dynamic tasks. Twelve volunteers participated in this study, performing two separate motor tasks. Study I (“Position Tracking”) involved participants to perform a visuomotor tracking task using a dial potentiometer and matching their response icon to the computer generated tracking icon whilst holding a pincer grip. Study II (“Force Tracking”) involved participants to perform a similar visuomotor tracking task by applying or releasing pressure against a fixed force transducer. Tasks were conducted at two speeds (“slow” being one tracking cycle in 10 s; and “fast” being two tracking cycles in 10 s) and compared to a visuomotor static task at a similar muscle contraction level. Results showed corticospinal changes with significant increases (p = 0.002) in excitability demonstrated during Study I (42.3 ± 16.8%) and Study II (56.3 ± 34.2%) slow speed tasks. Moreover, significant reduction in corticospinal inhibition was also observed during both tracking tasks at slow (59.3 ± 13.7%; p = 0.001) and fast speeds (31.9 ± 12.3%; p = 0.001). The findings may provide information on the underlying physiology during the early stages of motor skill acquisition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The instrumentation applied to the Charpy test machine allows the accompaniment of the specimen answer front the impact load, in form of a sign characteristically dynamic representative of the deformation process and it fractures of material tested. The main advantages of the rehearsal conventional Charpy: low cost, manufacturing sample facilities and simple handle the machine. With the instrumentation, the number of information regarding the process of fracture of the specimen increases. In this work discusses the influence of the hammer geometry in determination of the force during the process of specimen fracture submitted to the instrumented impact test Charpy-V. The purpose is obtaining a hammer, in conformity with Norma ISO 14.556, with great sensibility to register the force during the impact. Two geometries different from hammers were instrumented and rehearsed with material of low tenacity, in this case the steel ABNT 4140 in the condition of having normalized. It could be proven as larger the sensibility of the hammer, adult will be the effects of the shock waves in the strain gages of the transducer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 1000-kgf resistive strain-gauge load cell has been developed for quality testing of rocket propellant grain. A 7075-T6 aluminum alloy has been used for the elastic column, in which 8 uniaxial, 120-Ω strain gauges have been bonded and connected to form a full Wheatstone bridge to detect the strain. The chosen geometry makes the transducer insensitive to moments and, also, to the temperature. Experimental tests using a universal testing machine to imposed compression force to the load cell have demonstrated that its behavior is linear, with sensitivity of 2.90 μV/kgf ± 0.34%, and negligible hysteresis. The designed force transducer response to a dynamic test has been comparable to that of a commercial load cell. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação tem como objetivo principal propor um nodo (ou nó) sensor sem fio para ser utilizado em redes de sensores sem fio, em sistemas de aquisição de dados de extensômetros. O sistema de aquisição para os extensômetros é baseado na ponte de Wheatstone e de modo a permitir várias configurações de extensômetros. O processamento e a comunicação sem fio é realizada pelo ATmega128RFA1, composto por um microcontrolador e um transceiver Rádio-Frequência com o padrão Zigbee. O nodo foi projetado para garantir confiabilidade na aquisição de dados e ser totalmente controlado remotamente. Entre os parâmetros controláveis estão: o ganho do sinal e a taxa de amostragem. Além disso, o nodo possui recursos para efetuar o equilíbrio da ponte de Wheatstone automaticamente. A escolha de seus componentes, baseou-se em critérios relacionados ao consumo de energia do mesmo e ao custo. Foi concebida uma placa de circuito impresso (PCI) para o nodo, e sobre ela foram realizadas estimativas sobre o consumo de energia e valor agregado do protótipo, com o objetivo de analisar a sua viabilidade. Além do projeto do nodo sensor, o trabalho apresenta a proposta de integração do mesmo em uma rede de sensores sem fio (RSSF), incluindo a sugestão do hardware complementar e desenvolvimentos dos softwares. Para os testes do nodo sensor, foi construido experimentalmente um transdutor de força.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prescription of strength training intensity (ST) by maximum repetition (RM) is characterized by a decrease in the number of repetitions in multiple series. Some studies have shown that reductions in the intensity of exercise can optimize the volume of training with similar acute neuromuscular behaviors. The objective of the study was to investigate the acute effect of two different ST intensities on the training volume, maximum voluntary contraction (MVC) and rate of force development (RFD) in elderly women. The study included eight trained women (66.7 ± 6.7 years; 7.6 ± 17.8 kg; 159 cm; 29.33 ± 5.80 kg/m²). They underwent to three experimental conditions: two different intensities of ST (100% and 80% of 15-RM) on a chair for Leg Extension and a control condition. In the condition to 100% of 15 RM, all participants performed three sets to the concentric muscle fatigue, whereas in the condition to 80% involved the use of two sets of 15 repetitions and only the third to the concentric muscle fatigue. The order of experimental conditions was randomized. The MVC and RFD were determined on the basis of the isometric forcetime curve analysis which was obtained by a force transducer fixed on the unit Bonnet Chair, in the pre and after four and ten minutes for each experimental conditions. The total volume was calculated by multiplying the number of repetitions in three sets by the load in kg. Descriptive statistical analysis procedures were employed (mean ± standard deviation) in addition to two-way ANOVA. The level of significance was set at p <0.05. It was neither main effect of moment or condition, nor condition x moment interaction for MVC and RFD. For the total volume, no significant difference was noted between the conditions (100 and 80% of 15-RM). For sustainability of ...(Complete abstract click electronic access below)