919 resultados para foot arch
Resumo:
Foot plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.
Resumo:
Background: Although a lowered medial longitudinal arch has been cited as a causal factor in plantar fasciitis, there is little experimental evidence linking arch motion to the pathogenesis of the condition. This study investigated the sagittal movement of the arch in subjects with and without plantar fasciitis during gait. Methods: Digital fluoroscopy was used to acquire dynamic lateral radiographs from 10 subjects with unilateral plantar fasciitis and 10 matched control subjects. The arch angle and the first metatarsophalangeal joint angle were digitized and their respective maxima recorded. Sagittal movement of the arch was defined as the angular change between heel strike and the maximum arch angle observed during the stance phase of gait. The-thickness of the proximal plantar fascia was determined from sagittal sonograms of both feet. ANOVA models were used to identify differences between limbs with respect to each dependent variable. Relationships between arch movement and fascial thickness were investigated using correlations. Results: There was no significant difference in either the movement or maximum arch angle between limbs. However, subjects with plantar fasciitis were found to have a larger metatarsophalangeal joint angle than controls (P < 0.05). Whereas the symptomatic and asymptomatic plantar fascia were thicker than those of control feet (P < 0.05), significant correlations were noted between fascial thickness and peak arch and metatarsophalangeal joint angles (P < 0.05) in the symptomatic limb only. Conclusions: Neither abnormal shape nor movement of the arch are associated with chronic plantar fasciitis. However, arch mechanics may influence the severity of plantar fasciitis once the condition is present. Digital flexion, in contrast, has a protective role in what might be a bilateral disease process.
Resumo:
Biomechanical problems in children, is an important subject currently, existing controversy in different areas, for example, the majority of children have a flattened footprint, or the hypermobility joint is linked to a musculoskeletal pain. The objective of the study was to determine what kind of footprint is most frequent in school-age children (8-10 years) in the area of Plasencia. This was taken as a sign 50 children, of whom 28 were males and 22 females. All the subjects in the study underwent an assessment of footprint planted in static as well as an exploration of different parameters through inspection in a standing position (formula digital, rearfoot). The results show that excavated footprint is present in a 72% cases of the population, 16% was belonging to an excavated footprint in which we find a higher percentage of weight related.For the digital formula we find that the most common is the Egyptian foot by 40% of the cases and that the prevalence in the rearfoot, is a normal hindfoot. In relation with the hypermobility joint, we check that it is more common in girls and that none of them presents an association to musculoskeletal pain. As a future line we could establish a more comprehensive study with new techniques and valuingchild’s statics and dynamics, to have a more accurate study of the different variables in the sample population studied.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Relatively little information has been reported about foot and ankle problems experienced by nurses, despite anecdotal evidence which suggests they are common ailments. The purpose of this study was to improve knowledge about the prevalence of foot and ankle musculoskeletal disorders (MSDs) and to explore relationships between these MSDs and proposed risk factors. A review of the literature relating to work-related MSDs, MSDs in nursing, foot and lower-limb MSDs, screening for work-related MSDs, foot discomfort, footwear and the prevalence of foot problems in the community was undertaken. Based on the review, theoretical risk factors were proposed that pertained to the individual characteristics of the nurses, their work activity or their work environment. Three studies were then undertaken. A cross-sectional survey of 304 nurses, working in a large tertiary paediatric hospital, established the prevalence of foot and ankle MSDs. The survey collected information about self-reported risk factors of interest. The second study involved the clinical examination of a subgroup of 40 nurses, to examine changes in body discomfort, foot discomfort and postural sway over the course of a single work shift. Objective measurements of additional risk factors, such as individual foot posture (arch index) and the hardness of shoe midsoles, were performed. A final study was used to confirm the test-retest reliability of important aspects of the survey and key clinical measurements. Foot and ankle problems were the most common MSDs experienced by nurses in the preceding seven days (42.7% of nurses). They were the second most common MSDs to cause disability in the last 12 months (17.4% of nurses), and the third most common MSDs experienced by nurses in the last 12 months (54% of nurses). Substantial foot discomfort (Visual Analogue Scale (VAS) score of 50mm or more) was experienced by 48.5% of nurses at sometime in the last 12 months. Individual risk factors, such as obesity and the number of self-reported foot conditions (e.g., callouses, curled toes, flat feet) were strongly associated with the likelihood of experiencing foot problems in the last seven days or during the last 12 months. These risk factors showed consistent associations with disabling foot conditions and substantial foot discomfort. Some of these associations were dependent upon work-related risk factors, such as the location within the hospital and the average hours worked per week. Working in the intensive care unit was associated with higher odds of experiencing foot problems within the last seven days, foot problems in the last 12 months and foot problems that impaired activity in the last 12 months. Changes in foot discomfort experienced within a day, showed large individual variability. Fifteen of the forty nurses experienced moderate/substantial foot discomfort at the end of their shift (VAS 25+mm). Analysis of the association between risk factors and moderate/substantial foot discomfort revealed that foot discomfort was less likely for nurses who were older, had greater BMI or had lower foot arches, as indicated by higher arch index scores. The nurses’ postural sway decreased over the course of the work shift, suggesting improved body balance by the end of the day. These findings were unexpected. Further clinical studies examining individual nurses on several work shifts are needed to confirm these results, particularly due to the small sample size and the single measurement occasion. There are more than 280,000 nurses registered to practice in Australia. The nursing workforce is ageing and the prevalence of foot problems will increase. If the prevalence estimates from this study are extrapolated to the profession generally, more than 70,000 hospital nurses have experienced substantial foot discomfort and 25-30,000 hospital nurses have been limited in their activity due to foot problems during the last 12 months. Nurses with underlying foot conditions were more likely to report having foot problems at work. Strategies to prevent or manage foot conditions exist and they should be disseminated to nurses. Obesity is a significant risk factor for foot and ankle MSDs and these nurses may need particular assistance to manage foot problems. The risk of foot problems for particular groups of nurses, e.g. obese nurses, may vary depending upon the location within the hospital. Further research is needed to confirm the findings of this study. Similar studies should be conducted in other occupational groups that require workers to stand for prolonged periods.
Resumo:
Background and Purpose Although plantar fascial thickening is a sonographic criterion for the diagnosis of plantar fasciitis, the effect of local loading and structural factors on fascial morphology are unknown. The purposes of this study were to compare sonographic measures of fascial thickness and radiographic measures of arch shape and regional loading of the foot during gait in individuals with and without unilateral plantar fasciitis and to investigate potential relationships between these loading and structural factors and the morphology of the plantar fascia in individuals with and without heel pain. Subjects The participants were 10 subjects with unilateral plantar fasciitis and 10 matched asymptomatic controls. Methods Heel pain on weight bearing was measured by a visual analog scale. Fascial thickness and static arch angle were determined from bilateral sagittal sonograms and weight-bearing lateral foot roentgenograms. Regional plantar loading was estimated from a pressure plate. Results On average, the plantar fascia of the symptomatic limb was thicker than the plantar fascia of the asymptomatic limb (6.1±1.4 mm versus 4.2±0.5 mm), which, in turn, was thicker than the fascia of the matched control limbs (3.4±0.5 mm and 3.5±0.6 mm). Pain was correlated with fascial thickness, arch angle, and midfoot loading in the symptomatic foot. Fascial thickness, in turn, was positively correlated with arch angle in symptomatic and asymptomatic feet and with peak regional loading of the midfoot in the symptomatic limb. Discussion and Conclusion The findings indicate that fascial thickness and pain in plantar fasciitis are associated with the regional loading and static shape of the arch.
Resumo:
Previous research employing indirect measures of arch structure, such as those derived from footprints, have indicated that obesity results in a “flatter” foot type. In the absence of radiographic measures, however, definitive conclusions regarding the osseous alignment of the foot cannot be made. We determined the effect of body mass index (BMI) on radiographic and footprint‐based measures of arch structure. The research was a cross‐sectional study in which radiographic and footprint‐based measures of foot structure were made in 30 subjects (10 males, 20 female) in addition to standard anthropometric measures of height, weight, and BMI. Multiple (univariate) regression analysis demonstrated that both BMI ( β = 0.39, t 26 = 2.12, p = 0.04) and radiographic arch alignment ( β = 0.51, t 26 = 3.32, p < 0.01) were significant predictors of footprint‐based measures of arch height after controlling for all variables in the model ( R 2 = 0.59, F 3,26 = 12.3, p < 0.01). In contrast, radiographic arch alignment was not significantly associated with BMI ( β = −0.03, t 26 = −0.13, p = 0.89) when Arch Index and age were held constant ( R 2 = 0.52, F 3,26 = 9.3, p < 0.01). Adult obesity does not influence osseous alignment of the medial longitudinal arch, but selectively distorts footprint‐based measures of arch structure. Footprint‐based measures of arch structure should be interpreted with caution when comparing groups of varying body composition.
Resumo:
Orthotic therapy is frequently advocated for the treatment Of musculoskeletal pain and injury of the lower limb. The clinical efficacy, mechanical effects, and Underlying mechanism of the action of foot orthotics has not been Conclusively determined making it difficult for practitioners to agree on a reliable and valid clinical approach to their application and indeed even their fabrication. This problem is compounded by evidence suggesting that the most commonly used approach for orthotic prescription, the (Biomechanical Evaluation of the Foot. Vol. 1. Clinical Biomechanics Corporation, Los Angeles, 1971) approach, has poor validity and many of the associated clinical measurements of that approach lack adequate levels of reliability. This paper proposes a new approach that is based on two key elements. One is the identification, verification and quantification of physical tasks that serve as client specific outcome measures. The second is the application of specific physical manipulations during the performance of these physical tasks. The physical manipulations are selected on the basis of motion dysfunction and their immediate effects on the client specific outcome measures serve as the basis to making an informed decision on the propriety of using orthotics in individual clients. The motion dysfunction also guides the type of orthotic that is applied. Practical case examples as well Lis generic and specific guidelines to the application of this clinical assessment process and orthotics are provided in this paper. (C) 2004 Published by Elsevier Ltd.