990 resultados para foliar phosphorus
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Foliar phosphorus application enhances nutrient balance and growth of phosphorus deficient sugarcane
Resumo:
Although it is well known that nutrient imbalance in shoot tissues may impair plant performance, the interactive effect between foliar phosphorus (P) application and varying P availability in the rooting medium on the nutritional status of sugarcane has not been well studied. To fill this research gap, four sugarcane varieties (IAC91-1099, IACSP94-2101, IACSP94-2094 and IACSP95-5000) were evaluated using a combination of two concentrations of P in nutrient solution (P-deficient, PD = 0.02 mmol L^(−1) and P-sufficient, PS = 0.5 mmol L^(−1)) and foliar P application (none and 0.16 mol L^(−1)). The spray was applied until drip point three times during the experiment with 15 days intervals, after which the plants were harvested to quantify growth and shoot concentration of nitrogen (N), P, magnesium (Mg), sulphur (S) and manganese (Mn). The responses of sugarcane plants to foliar P spray at different levels of P supply in the rooting medium was not genotype-dependent. It was demonstrated for the averaged values across varieties, that foliar P application enhanced sugarcane performance under low P, as revealed by improvements of leaf area and dry matter production of shoot and root of PD plants. Under P limitation we also observed diminished shoot concentration of N, P, Mg, S and increased concentration of Mn. However, foliar P spray increased the concentrations of N, P, S and reduced shoot Mn. Furthermore, shoot P:N, P:Mg, P:S, P:Mn and Mg:Mn concentration ratios exhibited a positive relationship with shoot dry matter production. In conclusion, low P supply in the rooting medium impairs nutrient balance in shoot tissues of sugarcane at early growth; however, this effect was ameliorated by foliar P application which merits further study under field conditions.
Resumo:
Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.
Resumo:
Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional x landscape scale); ( 2) how are these variations in N availability integrated across plant functional groups ( legume 9 non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (delta(15)N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar delta(15)N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in delta(15)N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Nursery grown seedlings are an essential part of the forestry industry. These seedlings are grown under high nutrient conditions caused by fertilization. Though grown in a controlled environment, symbionts such as ectomycorrhizal fungi (EcMF) are often found in these conditions. To examine the effects of EcMF in these conditions, colonized Picea glauca seedlings were collected from Toumey Nursery in Watersmeet, MI. After collection, the EcMF present were morphotyped, and seedlings with different morphotypes were divided equally into two treatment types- fertilized and unfertilized. Seedlings received treatment for one growing season. After that time, seedlings were collected, ectomycorrhizas identified using morphotyping and DNA sequencing, and seedlings were analyzed for differences in leaf nutrient concentration, content, root to shoot ratio, total biomass, and EcMF community structure. DNA sequencing identified 5 unique species groups- Amphinema sp. 1, Amphinema sp. 5, Thelephora terrestris, Sphaerosporella brunnea, and Boletus variipes. In the unfertilized treatment it was found that Amphinema sp. 1 strongly negatively impacted foliar N concentration. In fertilized seedlings, Thelephora terrestris had a strong negative impact on foliar phosphorus concentration, while Amphinema sp. 1 positively impacted foliar boron, magnesium, manganese, and phosphorus concentration. In terms of content, Amphinema sp. 1 led to significantly higher content of manganese and boron in fertilized treatments, as well as elevated phosphorus in unfertilized seedlings. Amphinema sp. 5 had a significant negative effect on phosphorus content. When examining root to shoot ratio and biomass, those seedlings with more non-mycorrhizal tips had a higher root to shoot ratio. Findings from the study shed light on the interactions of the species. Amphinema sp. 5 shows very different functionality than Amphinema sp. 1. Amphinema sp. 1 appears to have the highest positive effect on seedling nutrition when in both fertilized and unfertilized environments. Amphinema sp. 5 and T. terrestris appear to behave parasitically in both fertilized and unfertilized conditions.
Resumo:
Currently there is very little information on the response of fruiting perennial plants to applied P. This is especially true for tropical production areas where soils have a high capacity of P fixation, and are poor in native phosphorus. An alternative to soil P fertilization, which is inefficient in fixing soils, is to apply phosphorus as a foliar spray. P is quickly absorbed by leaves, and is redistributed quite well through the plants because its phloem mobility, and foliar application may be a viable practice. The purpose of this present work, is to determine the effectiveness of foliar P application on the nutritional status and yield of guava. The experiment was done in a Typic Hapludox, for three consecutive agricultural years, in an adult orchard of 'Paluma' guava. Five treatments were tested: four rates leaf applications of P (0-0.5-1.0 and 2.0% of P2O5) and a control where P was applied to soil (200 g of P2O5/plant). Through the results it was verified that the foliar application of P altered the concentration of the nutrient in the soil (13 to 48 mg dm-3 P-resin), and in the guava leaves (1.2 to 1.8 g of P kg-1), but did not affect the production of fruits. In conclusion, in field conditions, it is viable to combine the phosphorus foliar fertilization with disease control, without increasing the operations and, consequently, the production cost.
Resumo:
Nitrogen, phosphorus and potassium dose effect in the graft box of lemon tree (of the family Rutaceae) nutrition and production. The aim of the study was to evaluate the graft box of lemon tree (of the family Rutaceae) nutritional state and its components of growth in function of nitrogen, phosphorus and potassium dose by fertilization. The experimental outlining was entirely made casually in factorial scheme 3(3) + 1, being 3 factors (nitrogen, phosphorus and potassium - NPK), 3 doses and in evidence (without fertilization), with 3 repetitions. The experimental milt was constituted by two tubes of 2,8 cm diameter and 12,3 cm high with a graft box (Hipobioto) of lemon tree (of the family Rutaceae) in each tube. The doses used were constituted by doses of N (460; 920 e 18,10 mg dm(-3)), P (50; 100 e 200 mg dm(-3)) and K (395; 790 e 1580 mg dm(-3)). The fertilization with N and K was carried out by fertirrigations and the P added to the substract of Pinus rind and vermiculite before the seeding. when the plants were 133 days after the germination they were subdivided in radicular system and air part for the determinations of the dry matter mass, height, foliar area, stem diameter and contents of nutrients. The N, K and P doses of 920 mg dm(-3), 790 mg dm(-3), 100 mg dm(-3), respectively, were enough for the suitable development of the graft box of lemon tree (of the family Rutaceae) in tubes.
Resumo:
ABSTRACT The indiscriminate use of mineral fertilizers in papaya orchards has increased production costs, and the use of arbuscular mycorrhizal fungi is a promising alternative to reduce such expenses. Therefore, the present research aimed at studying the efficiency of arbuscular mycorrhizal fungi (AMF) on dry matter and nutrient accumulation in Sunrise Solo papaya seedlings, by applying doses of P2O5 (triple superphosphate) that are harmful to the symbiosis. The experiment was carried out in a protected environment and was set up in a randomized block design with four replications, and consisted of four P2O5 doses (0, 672, 1386 and 2100 mg dm-3), three mycorrhizal fungi species (Gigaspora margarita, Entrophospora colombiana and Scutellospora heterogama) and the control treatment (mycorrhiza-free). Shoot and root dry matter as well as nitrogen, phosphorus and potassium contents in leaf and root tissues were assessed. Mycorrhizal inoculation promoted a 30% increase in shoot dry matter in relation to the control treatment. Mycorrhizal fungi promoted increases in leaf and root nitrogen content up to 672 mg dm-3 P2O5. Inoculation of E. colombiana favored the highest gains in root and shoot dry matter. P2O5 fertilization increased foliar and root phosphorus content.
Resumo:
This paper deal with one experiment carried out in order to study the correlation between petioles analysis and seed cotton yield. A 3X3X3 factorial with respect to N, P2 0(5) and K2 O was installed in a sandy soil with low potash content and medium amounts of total N and easily extractable P. Two kinds of petioles, newly mature were collected for analysis: those attached to fruit hearing branches, and petioles located on the stem; the first group is conventionally named "productive petioles"; The second one is called "not productive petioles". Petioles' sampling was done when the first blossoms appeared. Yield date showed a marked response to potash, both nitrogen and phosphorus having no effect. Very good correlation was found between petioles potash and yield. Both types of petioles samples were equally good indicators of the potash status of the plants. By mathematical treatment of the date it followes that the highed yield which was possible under experimental conditions, 1.562 kg of seed cotton per hectare would be reacher by using 128 kg of K2O per hectare. With this amount of potash supplied to the plants the following K levels would be expected in the petioles: "productive petioles" "not productive petioles" 1,93 % K 1,85 % K
Resumo:
A localização do superfosfato (marcado com P32) no maracujá em produção foi estudada em condições de plantação comercial. Verificou-se que as aplicações em sulcos circulares ou faixas superficiais ao redor da planta tem eficiência equivalente sendo esses métodos três vezes superiores à localização do adubo em furos no solo. A pulverização foliar, por sua vez, mostrou-se 20 vezes mais eficiente que a aplicação no solo de acordo com os dois primeiros métodos.
Resumo:
1. Tagged superphosphate was applied to 2.5 year old passion fruit plants from a commercial plantation established in a sandy loam. 2. 100 grams of the fertilizer were distributed in the following ways: in a circular furrow 20 cm around the plant 40 cm from the stems; in a circular strip 10 cm wide, 40 cm from the stems; in six holes around the plants, 40 cm from the stems 20 cm deep, 2.5 cm in diameter. 3. 10 grams of the fertilizer in 11 of water were sprayed to the leaves. 4. Three weeks after the treatments were made, leaf samples were taken for analysis. 5. Determinations of specific activities both in the leaves and in the fertilizer used have shown that R in the plant was derived from the superphosphate in the following relative proportions (by making the first treatment equal to 100): circular furrow = 100; circular strip = 120; holes = 30; foliar spray = 230.
Resumo:
The effect of different stages of sewage sludge treatment on phosphorus (P) dynamics in amended soils was determined using samples of undigested liquid (UL), anaerobically digested liquid (AD) and dewatered anaerobically digested (DC) sludge. Sludges were taken from three points in the same treatment stream and applied to a sandy loam soil in field-based mesocosms at 4, 8 and 16t ha−1 dry solids. Mesocosms were sown with perennial ryegrass (Lolium perenne cv. Melle), and the sward was harvested after 35 and 70 days to determine yield and foliar P concentration. Soils were also sampled during this period to measure P transformations and the activities of acid phosphomonoesterase and phosphodiesterase. Data show that the AD amended soils had the greatest plant-available and foliar P content up to the second harvest, but the UL amended soils had the greatest enzyme activity. Characterisation of control and 16t ha−1 soils and sludge using solution 31P nuclear magnetic resonance (NMR) spectroscopy after NaOH–EDTA extraction revealed that P was predominantly in the inorganic pool in all three sludge samples, with the highest proportion (of the total extracted P) as inorganic P in the anaerobically digested liquid sludge. After sludge incorporation, P was immobilised to organic species. The majority of organic P was in monoester-P forms, while the remainder of organic P (diester P and phosphonate P) was more susceptible to transformations through time and showed variation with sludge type. These results show that application of sewage sludge at rates as low as 4t ha−1 can have a significant nutritional benefit to ryegrass over an initial 35-day growth and subsequent 35-day re-growth periods. Differences in P transformation, and hence nutritional benefit, between sludge types were evident throughout the experiment. Thus, differences in sludge treatment process alter the edaphic mineralisation characteristics of biosolids derived from the same source material.
Resumo:
The search for new alternatives in order to increase soybeans productivity has been constant objective of researchers and farmers. The crop responses to phosphorus application in the soil are well defined, being this nutrient very important on its development and yield. The leaf fertilization on this crop appears as a new rationale option, mainly when the plant nutrient levels are low. So, this work aimed to study the effect of phosphorus leaf fertilization, applied at different plant stage, including: V5, R1, R4, V5 + R1, V5 + R4, R1 + R4, V5 + R1 + R4, V5 + R1 + R4 + R6 and test plot. The experiment was installed in a soybeans crop, Monarca cultivar, at Palmital Farm, Ijaci county, Minas Gerais state, Brazil, using a totally randomized design, with 9 treatments and 3 replications. The chelate Quimifol P30 in liquid form with 30% of the nutrient soluble in CNA + water in the, with doses of 21. ha(-1), was utilized as phosphorus source, using the applications performed with a constant pressure CO(2)-nebulizer. The different epochs of phosphorous application significantly altered the grains yield, proportioning significant increases, up to 16% for the V5, V5 + R1, V5 + R4, V5 + R1 + R4, V5 + R1 + R4 + R6 epochs, when compared to the test plot, clearly expressing the positive effect of these applications at V5 stage. The plant height, first legume insertion, and lodging index characteristics were not significantly altered by the different epochs evaluated. It was observed significant response for the nutrient leaf amounts only in the case of K and Zn indices, exclusively in the V5 + R4, and in the V5, V5 + R1 and V5 + R1 + R4 + R6 treatments, respectively.