931 resultados para flowering plants
Resumo:
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy, Several genes have been identified and cloned from the carrot system, These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using a Cuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes.
Resumo:
Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.
Resumo:
The first haploid angiosperm, a dwarf form of cotton with half the normal chromosome complement, was discovered in 1920, and in the ninety years since then such plants have been identified in many other species. They can occur either spontaneously or can be induced by modified pollination methods in vivo, or by in vitro culture of immature male or female gametophytes. Haploids represent an immediate, one-stage route to homozygous diploids and thence to F(1) hybrid production. The commercial exploitation of heterosis in such F(1) hybrids leads to the development of hybrid seed companies and subsequently to the GM revolution in agriculture. This review describes the range of techniques available for the isolation or induction of haploids and discusses their value in a range of areas, from fundamental research on mutant isolation and transformation, through to applied aspects of quantitative genetics and plant breeding. It will also focus on how molecular methods have been used recently to explore some of the underlying aspects of this fascinating developmental phenomenon.
Resumo:
Ainda que aranhas Thomisidae sejam comumente encontradas em flores, as associações desses aracnídeos a espécies de plantas e às suas características florais foram pouco registradas na região neotropical. Observações do hábito das plantas, visitantes florais, e também das características florais, tais como antese, odor, forma, cor e recursos da flor, foram assinaladas para espécies floridas de uma área de cerrado presentes em uma trilha de 2 km de extensão. Misumenops argenteus e Misumenops pallens representaram 62,86% das aranhas habitantes de 22 espécies de plantas floridas. As plantas Senna rugosa (Fabaceae), Styrax ferrugineus (Styracaceae) e Banisteriopsis campestris (Malpighiaceae) abrigaram, individualmente, cerca de 10 a 17% do total das aranhas e, nestas plantas, a antese diurna; flores de coloração atrativa a abelhas, como amarela (S. rugosa), branca (S. ferrugineus) e rosa (B. campestris) e as anteras poricidas, bem como a visita das flores por abelhas reforçou a evidência de síndrome de polinização para melitofilia. Este é o primeiro levantamento de espécies de aranhas Thomisidae associadas a plantas do cerrado brasileiro.
Resumo:
Transposable elements are major components of plant genomes and they influence their evolution, acting as recombination hot spots, acquiring specific cell functions or becoming part of protein-coding regions. The latter is the subject of the present analysis. This study is a report on the annotation of transposable elements (TEs) in expressed sequences of Coffea arabica, Coffea canephora and Coffea racemosa, showing the occurrence of 383 ESTs and 142 unigenes with TE fragments in these three Coffea species. Based on selected unigenes, it was possible to suggest 26 putative proteins with TE-cassette insertions, demonstrating a likely contribution to protein variability. The genes for two of those proteins, the fertility restorer (FR) and the pyrophosphate-dependent phosphofructokinase (PPi-PFKs) genes, were selected for evaluating the impact of TE-cassettes on host gene evolution of other plant genomes (Arabidopsis thaliana, Oryza sativa and populus trichocarpa). This survey allowed identifying a FR gene in O. sativa harboring multiple insertions of LTR retrotransposons that originated new exons, which however does not necessarily mean a case of molecular domestication. A possible transduction event of a fragment of the PPi-PFK beta-subunit gene mediated by Helitron ATREPX1 in Arabidopsis thaliana was also highlighted.
Resumo:
The plant-parasitic nematodes are responsible for serious injuries in roots and shoots of ornamental plants, reducing its beauty and consequently its economic value. This study aimed to ascertain the occurrence and distribution of plantparasitic nematodes through the analysis of the roots of ornamental and flowering plants at UNESP FCAV's landscape. The roots were collected from fifteen different species as follows: Anthurium andreannum, Rhododendron simsii, Impatiens walleriana, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Dracaena marginata, Ficus benjamina, Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'American Beauty' and 'Mini', Odontonema strictum, Portulaca grandiflora, Strelitzia reginae, Tradescantia zebrina and Tradescantia pallida. Samples of roots were processed. The plant-parasitic nematodes identified in the samples were: Meloidogyne sp. (Anthurium andreannum, Calathea stromata, Dieffenbachia picta, Ficus benjamina, Impatiens walleriana, Odontonema strictum, Portulaca grandiflora, Spathiphyllum ortgiesii 'Sensation'), Helicotylenchus dihystera (Calathea stromata, Dracaena marginata, Portulaca grandiflora, Spathiphyllum ortgiessi 'Sensation', Tradescantia pallida, Tradescantia zebrina), Tylenchus sp. (Anthurium andreannum, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Ficus benjamina, Rhododendron simsii), Aphelenchoides sp. (Dieffenbachia picta, Spathiphyllum ortgiesii 'Sensation', S. wallisi 'American Beauty'), Rotylenchulus reniformis (Cordyline terminalis, Dracaena marginata, Odontonema strictum), Pratylenchus sp. (Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'Mini'), Ditylenchus sp. (Spathiphyllum wallisi 'Mini'), Pratylenchus brachyurus (Tradescantia zebrina). The plant-parasitic nematodes weren't found in the roots of Strelitzia reginae.
Resumo:
This research focuses on reproductive biology and pollination ecology of entomophilous angiosperms, with particular concern to reproductive success in small and isolated populations of species that occur at their distribution limits or are endemic. I considered three perennial herbs as model species: Primula apennina Widmer, Dictamnus albus L. and Convolvulus lineatus L. I carried out field work on natural populations and performed laboratory analyses on specific critical aspects (resource allocation, pollen viability, stigmatic receptivity, physiological self-incompatibility, seed viability), through which I analysed different aspects related to plant fitness, such as production of viable seed, demographic structure of populations, type and efficiency of plant-pollinator system, and limiting factors.
Resumo:
no.7
Resumo:
no.2
Resumo:
The role of the male gamete—the sperm cell—in the process of fertilization is to recognize, adhere to, and fuse with the female gamete. These highly specialized functions are expected to be controlled by activation of a unique set of genes. However, male gametic cells traditionally have been regarded as transcriptionally quiescent because of highly condensed chromatin and a very reduced amount of cytoplasm. Here, we provide evidence for male gamete-specific gene expression in flowering plants. We identified and characterized a gene, LGC1, which was shown to be expressed exclusively in the male gametic cells. The gene product of LGC1 was localized at the surface of male gametic cells, suggesting a possible role in sperm–egg interactions. These findings represent an important step toward defining the molecular mechanisms of male gamete development and the cellular processes involved in fertilization of flowering plants.
Resumo:
In this paper, we report direct measurement of an influx of extracellular Ca2+ induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca2+-selective vibrating probe. Ca2+ influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca2+ influx in the vicinity of the sperm entry site with a delay of 1.8 ± 0.6 sec. The Ca2+ influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 μm⋅sec−1. Once established, Ca2+ influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmol⋅cm−2⋅sec−1 and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca2+ (c[Ca2+]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca2+ ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca2+ influx. In turn, c[Ca2+] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.
Resumo:
Flowering plants have evolved various genetic mechanisms to circumvent the tendency for self-fertilization created by the close proximity of male and female reproductive organs in a bisexual flower. One such mechanism is gametophytic self-incompatibility, which allows the female reproductive organ, the pistil, to distinguish between self pollen and non-self pollen; self pollen is rejected, whereas non-self pollen is accepted for fertilization. The Solanaceae family has been used as a model to study the molecular and biochemical basis of self/non-self-recognition and self-rejection. Discrimination of self and non-self pollen by the pistil is controlled by a single polymorphic locus, the S locus. The protein products of S alleles in the pistil, S proteins, were initially identified based on their cosegregation with S alleles. S proteins have recently been shown to indeed control the ability of the pistil to recognize and reject self pollen. S proteins are also RNases, and the RNase activity has been shown to be essential for rejection of self pollen, suggesting that the biochemical mechanism of self-rejection involves the cytotoxic action of the RNase activity. S proteins contain various numbers of N-linked glycans, but the carbohydrate moiety has been shown not to be required for the function of S proteins, suggesting that the S allele specificity determinant of S proteins lies in the amino acid sequence. The male component in self-incompatibility interactions, the pollen S gene, has not yet been identified. The possible nature of the pollen S gene product and the possible mechanism by which allele-specific rejection of pollen is accomplished are discussed.