992 resultados para flow measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L.) Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck) was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From 1974 to 1982 repeated tracer tests using fluorescent dyes were carried out in the highly glaciated drainage basin of Vernagtbach. These tests enabled the quantitative determination of the runoff in the forefield of the Vernagtferner, the calculation of travel times of the stream water and estimations of the relative contributions to the entire runoff originating from individual streams. In addition, tracer tests were carried out in the firn area of the glacier resulting in data concerning the storage and travel time of meltwater inside the glacier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: For over 50 years, radiocephalic wrist arteriovenous fistulae (RCAVF) have been the primary and best vascular access for haemodialysis. Nevertheless, early failure due to thrombosis or non-maturation is a major complication resulting in their abandonment. This prospective study was designed to investigate the predictive value of intra-operative blood flow on early failure of primary RCAVF before the first effective dialysis. METHODS: We enrolled patients undergoing creation of primary RCAVF for haemodialysis based on the pre-operative ultrasound vascular mapping discussed in a multidisciplinary approach. Intra-operative blood flow measurement was systematically performed once the anastomosis had been completed using a transit-time ultrasonic flowmeter. During the follow-up, blood flow was estimated by colour flow ultrasound at various intervals. Any events related to the RCAVF were recorded. RESULTS: Autogenous RCAVFs (n = 58) in 58 patients were constructed and followed up for an average of 30 days. Thrombosis and non-maturation occurred in eight (14%) and four (7%) patients, respectively. The intra-operative blood flow in functioning RCAVFs was significantly higher compared to non-functioning RCAVFs (230 vs 98 mL/min; P = 0.007), as well as 1 week (753 vs 228 mL/min; P = 0.0008) and 4 weeks (915 vs 245 mL/min, P < 0.0001) later. Blood flow volume measurements with a cut-off value of 120 mL/min had a sensitivity of 67%, specificity of 75% and positive predictive value of 91%. CONCLUSIONS: Blood flow <120 mL has a good predictive value for early failure in RCAVF. During the procedure, this cut-off value may be used to select appropriately which RCAVF should be investigated in the operation theatre in order to correct in real time any abnormality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective To investigate superior mesenteric artery flow measurement by Doppler ultrasonography as a means of characterizing inflammatory activity in Crohn's disease. Materials and Methods Forty patients were examined and divided into two groups – disease activity and remission – according to their Crohn's disease activity index score. Mean superior mesenteric artery flow volume was calculated for each group and correlated with Crohn's disease activity index score. Results The mean superior mesenteric artery flow volume was significantly greater in the patients with active disease (626 ml/min ± 236 × 376 ml/min ± 190; p = 0.001). As a cut off corresponding to 500 ml/min was utilized, the superior mesenteric artery flow volume demonstrated sensitivity of 83% and specificity of 82% for the diagnosis of Crohn's disease activity. Conclusion The present results suggest that patients with active Crohn's disease have increased superior mesenteric artery flow volume as compared with patients in remission. Superior mesenteric artery flow measurement had a good performance in the assessment of disease activity in this study sample.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes an electronic transducer for multiphase flow measurement. Its high sensitivity, good signal to noise ratio and accuracy are achieved through an electrical impedance sensor with a special guard technique. The transducer consists of a wide bandwidth and high slew rate differentiator where the lead inductance and stray capacitance effects are compensated. The sensor edge effect is eliminated by using a guard electrode based on the virtual ground potential of the operational amplifier. A theoretical modeling and a calibration method are also presented. The results obtained seem to confirm the validity of the proposed technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of colored microspheres to adequately evaluate blood flow changes under different circumstances in the same rat has been validated with a maximum of three different colors due to methodological limitations. The aim of the present study was to validate the use of four different colors measuring four repeated blood flow changes in the same rat to assess the role of vasopressor systems in controlling arterial pressure (AP). Red (150,000), white (200,000), yellow (150,000), and blue (200,000) colored microspheres were infused into the left ventricle of 6 male Wistar rats 1) at rest and 2) after vasopressin (aAVP, 10 µg/kg, iv), 3) renin-angiotensin (losartan, 10 mg/kg, iv), and 4) sympathetic system blockade (hexamethonium, 20 mg/kg, iv) to determine blood flow changes. AP was recorded and processed with a data acquisition system (1-kHz sampling frequency). Blood flow changes were quantified by spectrophotometry absorption peaks for colored microsphere components in the tissues evaluated. Administration of aAVP and losartan slightly reduced the AP (-5.7 ± 0.5 and -7.8 ± 1.2 mmHg, respectively), while hexamethonium induced a 52 ± 3 mmHg fall in AP. The aAVP injection increased blood flow in lungs (78%), liver (117%) and skeletal muscle (>150%), while losartan administration enhanced blood flow in heart (126%), lungs (100%), kidneys (80%), and gastrocnemius (75%) and soleus (94%) muscles. Hexamethonium administration reduced only kidney blood flow (50%). In conclusion, four types of colored microspheres can be used to perform four repeated blood flow measurements in the same rat detecting small alterations such as changes in tissues with low blood flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.