981 resultados para fire tolerant species


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin and structure are described of the secondary protective tissue in the stem of Erythorxylum tortuosum Mart., a fire tolerant shrubby species common in Brazilian cerrado. The highly tortuous stems are covered with thick bark which is more developed at the base of the stem. After fire in the cerrado, rhytidome fragments of the burned stem flake off, revealing newly formed cork. The first periderm appears near of the terminal buds and is iniated by periclinal divisions in subepidermal cells giving rise to radial rows of cells. The first phellogen is discernible only after the differentiation of the several radial rows of cork cells. Other phellogens have their origin in successively deeper layers of the cortex. The sucessive periderms are discontinuous around the circumference. The collapsed cells with phenolic substances and the accumulated dead cells cause the formation of discontinuous blackish lines, which delimit the sucessive periderms in the rhytidome. The rhytidome contains large quantities of sclereids developed from cell wall thickening of cortex cells. The occurrence of periderm, in the young parts of the stem and of rhytidome in the older parts represents pyrophytic characteristics and may explain, in part, the fire tolerance of this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post-fire growth. We compared survival and growth rates of regenerating small-sized individuals (juveniles) of woody tree species after dry season fire (February-March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3-mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast-growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre-monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire-tolerant size during favorable conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capacity to predict the effects of fire on biota is critical for conservation in fire-prone regions as it assists managers to anticipate the outcomes of different approaches to fire management. The task is complicated because species' responses to fire can vary geographically. This poses challenges, both for conceptual understanding of post-fire succession and fire management. We examine two hypotheses for why species may display geographically varying responses to fire. 1) Species' post-fire responses are driven by vegetation structure, but vegetation - fire relationships vary spatially (the 'dynamic vegetation' hypothesis). 2) Regional variation in ecological conditions leads species to select different post-fire ages as habitat (the 'dynamic habitat' hypothesis). Our case study uses data on lizards at 280 sites in a ~ 100 000 km2 region of south-eastern Australia. We compared the predictive capacity of models based on 1) habitat associations, with models based on 2) fire history and vegetation type, and 3) fire history alone, for four species of lizards. Habitat association models generally out-performed fire history models in terms of predictive capacity. For two species, habitat association models provided good discrimination capacity even though the species showed geographically varying post-fire responses. Our results support the dynamic vegetation hypothesis, that spatial variation in relationships between fire and vegetation structure results in regional variation in fauna-fire relationships. These observations explain how the widely recognised 'habitat accommodation' model of animal succession can be conceptually accurate yet predictively weak. © 2014 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire scar and vegetative analysis were used to construct a fire history for the Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) vegetation type of the Utah State University (USU) T. W Daniel Experimental Forest. Three distinct periods of fire frequency were established-presettlement (1700-1855), settlement (1856-1909), and suppression (1910-1990). Mean fire interval (MFI) decreased during the settlement period and greatly increased during the suppression era. The difference was attributed to the influx of ignition sources during the settlement of nearby Cache Valley, located 40 km to the west. Logging and livestock grazing appear to have led to the reduced MFI, which in turn worked as a factor to create the vegetative mosaic now observed on the study area. The increase in MFI during the suppression era permitted the advancement of shade-tolerant species in the understory of the shade-intolerant lodgepole pine (Pinus contorta var. latifolia) and quaking aspen (Populus tremuloides). Continued suppression of disturbance from wildfire will allow the lodgepole pine cover type, which experienced the lowest MFI during the settlement period, to be further invaded by shade-tolerant species, decreasing spatial stand diversity and increasing the risk of more intense fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Pollen and charcoal analysis at two lakes in southern Switzerland revealed that fire has had a prominent role in changing the woodland composition of this area for more than 7000 years. 2 The sediment of Lago di Origlio for the period between 5100 and 3100 bc cal. was sampled continuously with a time interval of about 10 years. Peaks of charcoal particles were significantly correlated with repeated declines in pollen of Abies, Hedera, Tilia, Ulmus, Fraxinus excelsior t., Fagus and Vitis and with increases in Alnus glutinosa t., shrubs (e.g. Corylus, Salix and Sambucus nigra t.) and several herbaceous species. The final disappearance of the lowland Abies alba stands at around 3150 bc cal. may be an example of a fire-caused local extinction of a fire-intolerant species. 3 Forest fires tended to diminish pollen diversity. The charcoal peaks were preceded by pollen types indicating human activity. Charcoal minima occurred during periods of cold humid climate, when fire susceptibility would be reduced. 4 An increase of forest fires at about 2100 bc cal. severely reduced the remaining fire-sensitive plants: the mixed-oak forest was replaced by a fire-tolerant alder–oak forest. The very strong increase of charcoal influx, and the marked presence of anthropogenic indicators, point to principally anthropogenic causes. 5 We suggest that without anthropogenic disturbances Abies alba would still form lowland forests together with various deciduous broadleaved tree taxa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendrocalamus strictus and Bambusa arundinacea are monocarpic, gregariously flowering species of bamboo, common in the deciduous forests of the State of Karnataka in India. Their populations have significantly declined, especially since the last flowering. This decline parelleis increasing incidence of grazing, fire and extraction in recent decades. Results of an experiment in which the intensities of grazing and fire were varied, indicate that while grazing significantly depresses the survival of seedlings and the recruitment of new eulms of bamboo clumps, fire appeared to enhance seedling survival, presumably by reducing competition of lass fire-resistant species. New shoots of bamboo are destroyed by insects and a variety of herbivorous mammals. In areas of intense herbivore pressure, a bamboo clump initiates the production of a much larger number of new culrm, but results in many fewer and shorter intact culms. Extraction renders the new shoots more susceptible to herbivore pressure by removal of the protective covering of branches at the base of a bamboo clump. Hence, regular and extensive extraction by the paper mills in conjuction with intense grazing pressure strongly depresses the addition of new culms to bamboo clumps. Regulation of grazing in the forest by domestic livestock along with maintenance of the cover at the base of the clumps by extracting the culms at a higher level should reduce the rate of decline of the bamboo stocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project built upon the successful outcomes of a previous project (TU02005) by adding to the database of salt tolerance among warm season turfgrass cultivars, through further hydroponic screening trials. Hydroponic screening trials focussed on new cultivars or cultivars that were not possible to cover in the time available under TU02005, including: 11 new cultivars of Paspalum vaginatum; 13 cultivars of Cynodon dactylon; six cultivars of Stenotaphrum secundatum; one accession of Cynodon transvaalensis; 12 Cynodon dactylon x transvaalensis hybrids; two cultivars of Sporobolus virginicus; five cultivars of Zoysia japonica; one cultivar of Z. macrantha, one common form of Z. tenuifolia and one Z. japonica x tenuifolia hybrid. The relative salinity tolerance of different turfgrasses is quantified in terms of their growth response to increasing levels of salinity, often defined by the salt level that equates to a 50% reduction in shoot yield, or alternatively the threshold salinity. The most salt tolerant species in these trials were Sporobolus virginicus and Paspalum vaginatum, consistent with the findings from TU02005 (Loch, Poulter et al. 2006). Cynodon dactylon showed the largest range in threshold values with some cultivars highly sensitive to salt, while others were tolerant to levels approaching that of the more halophytic grasses. Coupled with the observational and anecdotal evidence of high drought tolerance, this species and other intermediately tolerant species provide options for site specific situations in which soil salinity is coupled with additional challenges such as shade and high traffic conditions. By recognising the fact that a salt tolerant grass is not the complete solution to salinity problems, this project has been able to further investigate sustainable long-term establishment and management practices that maximise the ability of the selected grass to survive and grow under a particular set of salinity and usage parameters. Salt-tolerant turf grasses with potential for special use situations were trialled under field conditions at three sites within the Gold Coast City Council, while three sites, established under TU02005 within the Redland City Council boundaries were monitored for continued grass survival. Several randomised block experiments within Gold Coast City were established to compare the health and longevity of seashore paspalum (Paspalum vaginatum), Manila grass (Zoysia matrella), as well as the more tolerant cultivars of other species like buffalo grass (Stenotaphrum secundatum) and green couch (Cynodon dactylon). Whilst scientific results were difficult to achieve in the field situation, where conditions cannot be controlled, these trials provided valuable observational evidence of the likely survival of these species. Alternatives to laying full sod such as sprigging were investigated, and were found to be more appropriate for areas of low traffic as the establishment time is greater. Trials under controlled and protected conditions successfully achieved a full cover of Paspalum vaginatum from sprigs in a 10 week time frame. Salt affected sites are often associated with poor soil structure. Part of the research investigated techniques for the alleviation of soil compaction frequently found on saline sites. Various methods of soil de-compaction were investigated on highly compacted heavy clay soil in Redlands City. It was found that the heavy duplex soil of marine clay sediments required the most aggressive of treatments in order to achieve limited short-term effects. Interestingly, a well constructed sports field showed a far greater and longer term response to de-compaction operations, highlighting the importance of appropriate construction in the successful establishment and management of turfgrasses on salt affected sites. Fertiliser trials in this project determined plant demand for nitrogen (N) to species level. This work produced data that can be used as a guide when fertilising, in order to produce optimal growth and quality in the major turf grass species used in public parkland. An experiment commenced during TU02005 and monitored further in this project, investigated six representative warm-season turfgrasses to determine the optimum maintenance requirements for fertiliser N in south-east Queensland. In doing so, we recognised that optimum level is also related to use and intensity of use, with high profile well-used parks requiring higher maintenance N than low profile parks where maintaining botanical composition at a lower level of turf quality might be acceptable. Kikuyu (Pennisetum clandestinum) seemed to require the greatest N input (300-400 kg N/ha/year), followed by the green couch (Cynodon dactylon) cultivars ‘Wintergreen’ and ‘FLoraTeX’ requiring approximately 300 kg N/ha/year for optimal condition and growth. ‘Sir Walter’ (Stenotaphrum secundatum) and ‘Sea Isle 1’ (Paspalum vaginatum) had a moderate requirement of approximately 200 kg/ha/year. ‘Aussiblue’ (Digitaria didactyla)maintained optimal growth and quality at 100-200 kg N/ha/year. A set of guidelines has been prepared to provide various options from the construction and establishment of new grounds, through to the remediation of existing parklands by supporting the growth of endemic grasses. They describe a best management process through which salt affected sites should be assessed, remediated and managed. These guidelines, or Best Management Practices, will be readily available to councils. Previously, some high salinity sites have been turfed several times over a number of years (and Council budgets) for a 100% failure record. By eliminating this budgetary waste through targeted workable solutions, local authorities will be more amenable to investing appropriate amounts into these areas. In some cases, this will lead to cost savings as well as resulting in better quality turf. In all cases, however, improved turf quality will be of benefit to ratepayers, directly through increased local use of open space in parks and sportsfields and indirectly by attracting tourists and other visitors to the region bringing associated economic benefits. At the same time, environmental degradation and erosion of soil in bare areas will be greatly reduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Weed management practices in cotton systems that were based on frequent cultivation, residual herbicides, and some post-emergent herbicides have changed. The ability to use glyphosate as a knockdown before planting, in shielded sprayers, and now over-the-top in glyphosate-tolerant cotton has seen a significant reduction in the use of residual herbicides and cultivation. Glyphosate is now the dominant herbicide in both crop and fallow. This reliance increases the risk of shifts to glyphosate-tolerant species and the evolution of glyphosate-resistant weeds. Four surveys were undertaken in the 2008-09 and 2010-11 seasons. Surveys were conducted at the start of the summer cropping season (November-December) and at the end of the same season (March-April). Fifty fields previously surveyed in irrigated and non-irrigated cotton systems were re-surveyed. A major species shift towards Conyza bonariensis was observed. There was also a minor increase in the prevalence of Sonchus oleraceus. Several species were still present at the end of the season, indicating either poor control and/or late-season germinations. These included C. bonariensis, S. oleraceus, Hibiscus verdcourtii and Hibiscus tridactylites, Echinochloa colona, Convolvulus sp., Ipomea lonchophylla, Chamaesyce drummondii, Cullen sp., Amaranthus macrocarpus, and Chloris virgata. These species, with the exception of E. colona, H. verdcourtii, and H. tridactylites, have tolerance to glyphosate and therefore are likely candidates to either remain or increase in dominance in a glyphosate-based system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Habitat loss and associated fragmentation effects are well-recognised threats to biodiversity. Loss of functional connectivity (mobility, gene flow and demographic continuity) could result in population decline in altered habitat, because smaller, isolated populations are more vulnerable to extinction. We tested whether substantial habitat reduction plus fragmentation is associated with reduced gene flow in three 'decliner' woodland-dependent bird species (eastern yellow robin, weebill and spotted pardalote) identified in earlier work to have declined disproportionately in heavily fragmented landscapes in the Box-Ironbark forest region in north-central Victoria, Australia. For these three decliners, and one 'tolerant' species (striated pardalote), we compared patterns of genetic diversity, relatedness, effective population size, sex-ratios and genic (allele frequency) differentiation among landscapes of different total tree cover, identified population subdivision at the regional scale, and explored fine-scale genotypic (individual-based genetic signature) structure. Unexpectedly high genetic connectivity across the study region was detected for 'decliner' and 'tolerant' species. Power analysis simulations suggest that moderate reductions in gene flow should have been detectable. However, there was evidence of local negative effects of reduced habitat extent and structural connectivity: slightly lower effective population sizes, lower genetic diversity, higher within-site relatedness and altered sex-ratios (for weebill and eastern yellow robin) in 10 x 10 km 'landscapes' with low vegetation cover. We conclude that reduced structural connectivity in the Box-Ironbark ecosystem may still allow sufficient gene flow to avoid the harmful effects of inbreeding in our study species. Although there may still be negative consequences of fragmentation for demographic connectivity, the high genetic connectivity of mobile bird species in this system suggests that reconnecting isolated habitat patches may be less important than increasing habitat extent and/or quality if these need to be traded off.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 B.V. Body size is a fundamental and defining character of an organism, and its variation in space and time is generally considered to be a function of its biology and interactions with its living environment. A great deal of body size related ecological and evolutionary research has been undertaken, mostly in relation to extant animals. Among the many body size-related hypotheses proposed and tested, the size-bathymetry relationship is probably the least studied. In this study, we compiled a global body size dataset of Changhsingian (Late Permian, ca. 254. Ma-252. Ma) brachiopod species from low-latitude areas (30°S-30°N) and analyzed their species diversity and body size distribution patterns in relation to the nearshore-offshore-basin bathymetric gradient. The dataset contained 1768 brachiopod specimens in 435 species referred to 159 genera and 9 orders, from 135 occurrences (localities) of 18 different palaeogeographic regions. Treating the whole of the Changhsingian Stage as a single time slice, we divided the nearshore-offshore-basin bathymetric gradient into three broad depth-related environments: nearshore, offshore and basinal environments, and compared how the species diversity and body size varied along this large-scale bathymetric gradient.Here, we report an array of complex patterns. First, we found a clear overall inverse correlation between species diversity and water depth along the nearshore-offshore-basin gradient, with most species concentrating in the nearshore environment. Second, when the median sizes of all low-latitude brachiopod species from the three environments were compared, we found that there was no significant size difference between the nearshore and offshore environments, suggesting that neither the wave base nor the hydrostatic pressure exerts a critical influence on the body size of brachiopods. On the other hand, the median sizes of brachiopods from the nearshore environment and, to a lesser extent, the offshore environment were found to be significantly larger than that of basinal brachiopods. This trend of significant size reduction in basinal brachiopods mirrors the relative low species diversity in the basinal environment, and neither can be easily explained by the tendency of decreasing food availability towards deeper sea environments. Rather, both trends are consistent with the hypothesis of an expanding Oxygen Minimum Zone (OMZ) in the bathyal (slope to deepsea) environments, where hypoxic to anoxic conditions are considered to have severely restricted the diversification of benthos and favored the relative proliferation of small-sized brachiopods. Finally, a significant difference was also found between eurybathic and stenobathic species in their body size response to the nearshore-offshore-basin gradient, in that eurybathic species (species found in all three environments) did not tend to change their body size significantly according to depth, whereas stenobathic forms (species restricted to a single environment) exhibit a decline in body size towards the basinal environment. This pattern is interpreted to suggest that bathymetrically more tolerant species are less sensitive to depth control with respect to their body size change dynamics, in contrast to stenobathic species which tend to grow larger in shallower water depths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)