997 resultados para fire mosaic


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems. © 2014 Society for Conservation Biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire scar and vegetative analysis were used to construct a fire history for the Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) vegetation type of the Utah State University (USU) T. W Daniel Experimental Forest. Three distinct periods of fire frequency were established-presettlement (1700-1855), settlement (1856-1909), and suppression (1910-1990). Mean fire interval (MFI) decreased during the settlement period and greatly increased during the suppression era. The difference was attributed to the influx of ignition sources during the settlement of nearby Cache Valley, located 40 km to the west. Logging and livestock grazing appear to have led to the reduced MFI, which in turn worked as a factor to create the vegetative mosaic now observed on the study area. The increase in MFI during the suppression era permitted the advancement of shade-tolerant species in the understory of the shade-intolerant lodgepole pine (Pinus contorta var. latifolia) and quaking aspen (Populus tremuloides). Continued suppression of disturbance from wildfire will allow the lodgepole pine cover type, which experienced the lowest MFI during the settlement period, to be further invaded by shade-tolerant species, decreasing spatial stand diversity and increasing the risk of more intense fires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mosaic novel - with its independent 'story-tiles' linking together to form a complete narrative - has the potential to act as a reflection on the periodic resurfacing of unconscious memories in the conscious lives of fictional characters. This project is an exploration of the mosaic text as a fictional analogue of involuntary memory. These concepts are investigated as they appear in traditional fairy tales and engaged with in this thesis's creative component, Sourdough and Other Stories (approximately 80,000 words), a mosaic novel comprising sixteen interconnected 'story-tiles'. Traditional fairy tales are non-reflective and conducive to forgetting (i.e. anti-memory); fairy tale characters are frequently portrayed as psychologically two-dimensional, in that there is no examination of the mental and emotional distress caused when children are stolen/ abandoned/ lost and when adults are exiled. Sourdough and Other Stories is a creative examination of, and attempted to remedy, this lack of psychological depth. This creative work is at once something more than a short story collection, and something that is not a traditional novel, but instead a culmination of two modes of writing. It employs the fairy tale form to explore James' 'thorns in the spirit' (1898, p.199) in fiction; the anxiety caused by separation from familial and community groups. The exegesis, A Story Told in Parts - Sourdough and Other Stories is a critical essay (approximately 20,000 words in length), a companion piece to the mosaic novel, which analyses how my research question proceeded from my creative work, and considers the theoretical underpinnings of the creative work and how it enacts the research question: 'Can a writer use the structural possibilities of the mosaic text to create a fictional work that is an analogue of an involuntary memory?' The cumulative effect of the creative and exegetical works should be that of a dialogue between the two components - each text informing the other and providing alternate but complementary lenses with which to view the research question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian Cerrado houses a hugely diverse biota and is considered a conservation hotspot. One of the greatest threats to the integrity of this ecosystem is introduced African grasses, which can competitively exclude native grasses and cause changes in the microclimate and other disturbances. The Cerrado is a mosaic vegetation that provides different combinations, both spatially and temporally, of conditions that can become natural stressors to the herbaceous vegetation (water, nutrient and light availability). These mosaics are reflected in differences in relationships among native and invasive species, affecting competition and creating situations (place/season) that are more, or less, susceptible to invasion. The present study aimed to identify the different biological responses of native (Aristida recurvata, Aristida setifolia, Axonopus barbigerus, Echinolaena inflexa, Gymnopogon spicatus, Paspalum gardnerianum, Paspalum stellatum, Schizachyrium microstachyum, Schizachyrium sanguineum) and invasive (Melinis minutiflora and Andropogon gayanus) grasses to variations in natural stressors and to disturbance (fire and clipping), in order to understand changes in ecosystem functioning and competition processes between the grasses, and to understand invasion dynamics in this ecosystem. The presence of invasive species proved to affect the ecosystem functioning by increasing soil feeding activity. These differences were no longer observed in the dry season or when fires were frequent, showing that water availability and fire are more detrimental to soil feeding activity than is the vegetation. Laboratory experiments showed that both drought and flood simulated scenarios damaged both species, although the invasive species performed better under all watering conditions and responded better to fertilization. Underlying mechanisms such as the efficiency of photosynthesis and antioxidant mechanisms helped to explain this behavior. The invasive species grew faster and showed less cellular damage and a healthier photosystem, reflected in higher assimilation rates under stress. These differences between the native and invasive species were reduced with clipping, especially in dry soil with no fertilization, where the native species recovered better in relation to the pre-clipping levels. Flooding was as stressful as drought, but the invasive species can bypass this issue by growing an extensive root system, especially in the better-drained soils. Fire is more detrimental than clipping, with a slower recovery, while post-fire temperatures affect the germination of both invasive and native seeds and may be an important factor influencing the persistence of a diverse biota. This approach will finally contribute to the choice of the appropriate management techniques to preserve the Cerrado’s biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To elucidate the relationship between forest dynamics and fire frequency pollen percentages and charcoal amounts from a 120 cm long peat core and from samples of modern pollen rain were collected along a transect. The study site in southern Brazil is characterized by a species-rich mosaic of grassland-Araucaria forest. It is of crucial importance for management strategies for conservation to understand the development and maintenance of these vegetation mosaics including their sharp forest-grassland boundaries. During the late Holocene, considerable changes occurred in the area. From Anno Domini (AD) 1360 to 1410, the area was dominated by Campos (grassland) vegetation and fire was very common. From AD 1410 to 1500, Araucaria forest expanded and fire was less frequent. From AD 1500 to 1580, Campos grassland spread and the Araucaria forest ceased its development, apparently due to the increase of fire. From AD 1580 to 1935, after a decrease in fire frequency, Araucaria forest expanded again. From AD 1935 to the present, the Araucaria forest expanded while the Campos area decreased. Fire was very rare in this period. The results indicate a strong interaction of forest expansion, forming a mosaic of Campos and Araucaria forest, and the frequency of fire during the past 600 years. A possible collapse of the indigenous population following the post-Colombian colonization in southern Brazil after about AD 1550 may have caused a great reduction of fire frequency. The introduction of cattle (probably after AD 1780) and the resulting decrease of fire frequency might be the reason for forest expansion. Fire is probably the most important factor controlling the dynamics of the forest-grassland mosaics and the formation of sharp borders between these two vegetation types. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of fire to fauna management, particularly for endangered species, is a significant issue for wildlife managers. Mammals respond to fire regimes including intensity, frequency and season of occurrence, and changes in fire-regimes are implicated in detrimental effects on mammal communities. For many species temporal habitat change is a key factor affecting the persistence of populations. These species require the option of colonising the shifting habitat mosaic. There is substantial evidence that species such as the native rodents New Holland Mouse (Pseudomys novaehollandiae) and Heath Rat (Pseudomys shortridgei) are early successional species dependent on such temporal habitat changes. In conrast species such as the dasyurid marsupial, Swamp Antechinus (Antechinus minimus) are late successional species, which may take up to 20 years to recolonise. In many situations ecological fire regimes need to be implemented to increase areas of suitable habitat for population expansion and reintroductions. This paper assesses research findings and the development of management actions incorporating ecological fire regimes for the recovery of Pseudomyine rodents and the Swamp Antechinus. Spatially explicit models are required to determine changes and patterns at the landscape level. The prospect of global climate change also is of significance and needs to be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch-mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km2) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km2 area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape-level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse-grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11–35 years postfire) may support the fire-sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse-grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short-term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire is a widespread disturbance and an important ecological process in semi-arid mallee ecosystems of southern Australia. Understanding the effects of fire on plants and animals is a key challenge for the conservation and management of biodiversity in this ecosystem. Commenctngin2006, the Mallee Fire and Biodiversity Project is investigating the effects of fire on range of taxa (vascular plants, invertebrates, reptiles, birds and mammals), with a focus on the influence of the properties of 'fire mosaics' on biota. A 'whole of landscape' design was employed, in which the flora and fauna were sampled in 28 study landscapes, each4 km in diameter (12.5 km2) across a 104,000 km2 area of the Murray Mallee region of Victoria, SA and NSW. Here, we summarise some key results and outputs from this project to date. These include: detailed maps of fire history and major vegetation types; a method for predicting the age of mallee vegetation; novel information about the distribution of fire age-classes in the region; and changes to vegetation structure and in the occurrence of reptile, bird and mammal species over a century-long post-fire time-frame. We also present an overview of the effects of fire mosaics (extent of particular age classes, diversity of fire age-classes) on the richness of some mallee fauna. A wealth of knowledge has been developed through the Mallee Fire and Biodiversity Project that will assist the management of mallee ecosystems in southern Australia for the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resource selection by animals influences individual fitness, the abundance of local populations, and the distribution of species. Further, the degree to which individuals select particular resources can be altered by numerous factors including competition, predation, and both natural- and human-induced environmental change. Understanding the influence of such factors on the way animals use resources can guide species conservation and management in changing environments. In this study, we investigated the effects of a prescribed fire on small-scale (microhabitat) resource selection, abundance, body condition, and movement pathways of a native Australian rodent, the bush rat (Rattus fuscipes). Using a before-after, control-impact design, we gathered data from 60 individuals fitted with spool and line tracking devices. In unburnt forest, selection of resources by bush rats was positively related to rushes, logs and complex habitat, and negatively related to ferns and litter. Fire caused selection for spreading grass, rushes, and complex habitat to increase relative to an unburnt control location. At the burnt location after the fire, rats selected patches of unburnt vegetation, and no rats were caught at a trapping site where most of the understory had been burnt. The fire also reduced bush rat abundance and body condition and caused movement pathways to become more convoluted. After the fire, some individuals moved through burnt areas but the majority of movements occurred within unburnt patches. The effects of fire on bush rat resource selection, movement, body condition, and abundance were likely driven by several linked factors including limited access to shelter and food due to the loss of understory vegetation and heightened levels of perceived predation risk. Our findings suggest the influence of prescribed fire on small mammals will depend on the resulting mosaic of burnt and unburnt patches and how well this corresponds to the resource requirements of particular species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Cerrado savannas from Brazil fire events are common and strongly influence the vegetation structure and, consequently, the associated small mammals. In this paper, we investigate changes in the structure of small mammal communities related to sites of different post-fire ages. Mammals were captured in similar Cerrado sites that differed in time since the last burn ( 1 to 26 yr). We sampled six sites in the wet season of 1997 ( phase 1) and, three years later, six sites in the wet and dry seasons ( phase 2). Six rodent species and four marsupials were captured. Community composition changed drastically as a function of time since fire. The diversity and abundance of small mammals reached maximum values in the early successional stages. The rodent Calomys tener was present only in early seral stages. The rodent Bolomys lasiurus was more frequent in mid-successional stages and decreased in later seral stages, and the rodent Oryzomys subflavus occupied all successional stages. The marsupial Gracilinanus agilis was dominant in the area that did not burn for at least 23 yr. Changes in composition of the community of small mammals were more accelerated in early successional stages, when there are more drastic vegetational changes. The ability of small mammals to cope with Cerrado fires and the great dissimilarity among post-burning seral stages suggest that a mosaic of areas representing different post-fire seral stages could increase the regional diversity of this group.