986 resultados para fire annunciator control panels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gemstone Team Future Firefighting Advancements

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El foc bacterià és una malaltia que afecta a plantes de la família de la rosàcies, causada pel bacteri Erwinia amylovora. El seu rang d'hostes inclou arbres fruiters, com la perera, la pomera o el codonyer, i plantes ornamentals de gran interès comercial i econòmic. Actualment, la malaltia s'ha dispersat i es troba àmpliament distribuïda en totes les zones de clima temperat del món. A Espanya, on la malaltia no és endèmica, el foc bacterià es va detectar per primer cop al 1995 al nord del país (Euskadi) i posteriorment, han aparegut varis focus en altres localitzacions, que han estat convenientment eradicats. El control del foc bacterià, és molt poc efectiu en plantes afectades per la malaltia, de manera que es basa en mesures encaminades a evitar la dispersió del patogen, i la introducció de la malaltia en regions no endèmiques. En aquest treball, la termoteràpia ha estat avaluada com a mètode d'eradicació d'E. amylovora de material vegetal de propagació asimptomàtic. S'ha demostrat que la termoteràpia és un mètode viable d'eradicar E. amylovora de material de propagació. Gairebé totes les espècies i varietats de rosàcies mantingudes en condicions d'humitat sobrevivien 7 hores a 45 ºC i més de 3 hores a 50 ºC, mentre que més d'1 hora d'exposició a 50 ºC amb calor seca produïa danys en el material vegetal i reduïa la brotació. Tractaments de 60 min a 45 ºC o 30 min a 50 ºC van ser suficients per reduir la població epífita d'E. amylovora a nivells no detectables (5 x 102 ufc g-1 p.f.) en branques de perera. Els derivats dels fosfonats i el benzotiadiazol són efectius en el control del foc bacterià en perera i pomera, tant en condicions de laboratori, com d'hivernacle i camp. Els inductors de defensa de les plantes redueixen els nivells de malaltia fins al 40-60%. Els intervals de temps mínims per aconseguir el millor control de la malaltia van ser 5 dies pel fosetil-Al, i 7 dies per l'etefon i el benzotiadiazol, i les dosis òptimes pel fosetil-Al i el benzotiadiazol van ser 3.72 g HPO32- L-1 i 150 mg i.a. L-1, respectivament. Es millora l'eficàcia del fosetil-Al i del benzotiadiazol en el control del foc bacterià, quan es combinen amb els antibiòtics a la meitat de la dosi d'aquests últims. Tot i que l'estratègia de barrejar productes és més pràctica i fàcil de dur a terme a camp, que l'estratègia de combinar productes, el millor nivell de control de la malaltia s'aconsegueix amb l'estratègia de combinar productes. Es va analitzar a nivell histològic i ultrastructural l'efecte del benzotiadiazol i dels fosfonats en la interacció Erwinia amylovora-perera. Ni el benzotiadiazol, ni el fosetil-Al, ni l'etefon van induir canvis estructurals en els teixits de perera 7 dies després de la seva aplicació. No obstant, després de la inoculació d'E. amylovora es va observar en plantes tractades amb fosetil-Al i etefon una desorganització estructural cel·lular, mentre que en les plantes tractades amb benzotiadiazol aquestes alteracions tissulars van ser retardades. S'han avaluat dos models (Maryblyt, Cougarblight) en un camp a Espanya afectat per la malaltia, per determinar la precisió de les prediccions. Es van utilitzar dos models per elaborar el mapa de risc, el BRS-Powell combinat i el BIS95 modificat. Els resultats van mostrar dos zones amb elevat i baix risc de la malaltia. Maryblyt i Cougarblight són dos models de fàcil ús, tot i que la seva implementació en programes de maneig de la malaltia requereix que siguin avaluats i validats per un període de temps més llarg i en àrees on la malaltia hi estigui present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"DOE/EV/06020-T3."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os ninhos de saúva são importantes perturbações naturais capazes de gerar mosaicos de determinados tipos de vegetação e afetar a estrutura e composição dos ecossistemas neotropicais. Nesse sentido, este estudo avaliou os efeitos dos ninhos de saúva (Atta spp.) na dinâmica de crescimento da vegetação de uma floresta de transição Amazônia-Cerrado submetida a um regime de incêndios periódicos, ao sul da bacia amazônica, Estado do Mato Grosso, Brasil. Especificamente, avaliou-se os efeitos dos ninhos: (1) na nutrição e crescimento da vegetação; (2) na proteção da vegetação contra o fogo e (3) na regeneração florestal pós-fogo. Para determinar tais efeitos, ninhos e vegetação associada (em um raio de até 10 m dos ninhos) estabelecidos em áreas de 150 ha da floresta de transição, foram mapeados e monitorados. Tais áreas subdivididas em parcelas de 50 ha com diferentes tratamentos: incêndios tri-anuais; incêndios anuais e proteção do fogo (controle) fazem parte do Projeto “Savanização” sob a coordenação do Instituto de Pesquisas Ambiental da Amazônia, IPAM. Os experimentos sobre os efeitos dos ninhos na nutrição e crescimento da vegetação indicaram que plantas estabelecidas próximas aos ninhos têm a absorção de nutriente facilitada e por isso apresentaram uma maior concentração foliar de Fósforo. Como conseqüência, foi registrado um maior crescimento em diâmetro do caule para estas plantas quando comparadas com aquelas distantes dos ninhos. Os ninhos funcionaram como aceiros (devido ao acúmulo de terra sobre os murundus resultante das escavações das saúvas) reduzindo a área total queimada em seu entorno, principalmente nos locais de bordas (local de maior incidência de ninhos) e protegendo a vegetação circundante da mortalidade pelo fogo. Em oposição a estes benefícios, foi constatado maior herbivoria de plântulas e remoção de sementes por saúvas nas áreas de alta densidade de colônias ativas, um resultado que compromete os estágios iniciais de sucessão florestal pós-fogo. Este estudo revela a importância das saúvas na redistribuição e reciclagem de nutrientes, e revela, pela primeira vez, a proteção da vegetação contra o fogo, por seus ninhos. Por outro lado, também mostra que perturbações antrópicas, como o fogo, aumentam as populações de saúva, o que pode tornar-se uma barreira ao sucesso da regeneração florestal pós-fogo. Com base nesse estudo, pode-se prever que ambientes naturais podem ter o crescimento da vegetação acelerado pela presença dos ninhos de saúva, mas em ambientes sob perturbação, a ação das saúvas pode ser a principal ameaça a regeneração da vegetação original. Desta forma, pode-se concluir que os efeitos (benéficos ou deletérios) das saúvas dependem do nível de perturbação ou maturidade do bioma no qual seus ninhos se estabelecem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater represents one of the most important resources of the world and it is essential to prevent its pollution and to consider remediation intervention in case of contamination. According to the scientific community the characterization and the management of the contaminated sites have to be performed in terms of contaminant fluxes and considering their spatial and temporal evolution. One of the most suitable approach to determine the spatial distribution of pollutant and to quantify contaminant fluxes in groundwater is using control panels. The determination of contaminant mass flux, requires measurement of contaminant concentration in the moving phase (water) and velocity/flux of the groundwater. In this Master Thesis a new solute flux mass measurement approach, based on an integrated control panel type methodology combined with the Finite Volume Point Dilution Method (FVPDM), for the monitoring of transient groundwater fluxes, is proposed. Moreover a new adsorption passive sampler, which allow to capture the variation of solute concentration with time, is designed. The present work contributes to the development of this approach on three key points. First, the ability of the FVPDM to monitor transient groundwater fluxes was verified during a step drawdown test at the experimental site of Hermalle Sous Argentau (Belgium). The results showed that this method can be used, with optimal results, to follow transient groundwater fluxes. Moreover, it resulted that performing FVPDM, in several piezometers, during a pumping test allows to determine the different flow rates and flow regimes that can occurs in the various parts of an aquifer. The second field test aiming to determine the representativity of a control panel for measuring mass flus in groundwater underlined that wrong evaluations of Darcy fluxes and discharge surfaces can determine an incorrect estimation of mass fluxes and that this technique has to be used with precaution. Thus, a detailed geological and hydrogeological characterization must be conducted, before applying this technique. Finally, the third outcome of this work concerned laboratory experiments. The test conducted on several type of adsorption material (Oasis HLB cartridge, TDS-ORGANOSORB 10 and TDS-ORGANOSORB 10-AA), in order to determine the optimum medium to dimension the passive sampler, highlighted the necessity to find a material with a reversible adsorption tendency to completely satisfy the request of the new passive sampling technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 um and 18 um) and concentration (0 - 12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 um capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120C to yield a glass transition temperature of 127C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizes (25 um and 42 um) and concentrations (0 - 11 vol%). Incorporating 9 vol% 42 um capsules or 11 vol% 25 um capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196C to 35C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used as a fire safety material in the building industry. Many research studies have been undertaken to investigate the thermal behaviour of plasterboards under standard fire conditions. However, there are many discrepancies in relation to the basic thermal properties of plasterboards while simple equations are not available to predict the ambient surface time–temperature profiles of gypsum plasterboard panels that can be used in simulating the behaviour and strength of steel studs or joists in load bearing LSF wall and floor systems. In this research, suitable thermal properties of plasterboards were proposed based on a series of tests and available results from past research. Finite element models of gypsum plasterboard panels were then developed to simulate their thermal behaviour under standard fire conditions. The accuracy of the proposed thermal properties and the finite element models was validated by comparing the numerical results with available fire test results of plasterboard panels. This paper presents the details of the finite element models of plasterboard panels, the thermal analysis results from finite element analyses under standard fire conditions and their comparisons with experimental results

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used to protect the light gauge steel-framed walls in buildings from fires. Single or multiple plasterboards can be used for this purpose, whereas recent research has proposed a composite panel with a layer of external insulation between two plasterboards. However, a good understanding of the thermal behaviour of these plasterboard panels under fire conditions is not known. Therefore, 15 small-scale fire tests were conducted on plasterboard panels made of 13 and 16 mm plasterboards and four different types of insulations with varying thickness and density subject to standard fire conditions in AS 1530.4. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effects of interfaces between adjacent plasterboards. Effects of using external insulations such as glass fibre, rockwool and cellulose fibre were also determined. The thermal performance of composite panels developed from different insulating materials of varying densities and thicknesses was examined and compared. This paper presents the details of the fire tests conducted in this study and their valuable time–temperature data for the tested plasterboard panels. These data can be used for the purpose of developing and validating accurate thermal numerical models of these panels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is at the population level that an invasion either fails or succeeds. Lantana camara L. (Verbenaceae) is a weed of great significance in Queensland Australia and globally but its whole life-history ecology is poorly known. Here we used 3 years of field data across four land use types (farm, hoop pine plantation and two open eucalyptus forests, including one with a triennial fire regime) to parameterise the weed’s vital rates and develop size-structured matrix models. Lantana camara in its re-colonization phase, as observed in the recently cleared hoop pine plantation, was projected to increase more rapidly (annual growth rate, λ = 3.80) than at the other three sites (λ 1.88–2.71). Elasticity analyses indicated that growth contributed more (64.6 %) to λ than fecundity (18.5 %) or survival (15.5 %), while across size groups, the contribution was of the order: juvenile (19–27 %) ≥ seed (17–28 %) ≥ seedling (16–25 %) > small adult (4–26 %) ≥ medium adult (7–20 %) > large adult (0–20 %). From a control perspective it is difficult to determine a single weak point in the life cycle of lantana that might be exploited to reduce growth below a sustaining rate. The triennial fire regime applied did not alter the population elasticity structure nor resulted in local control of the weed. However, simulations showed that, except for the farm population, periodic burning could work within 4–10 years for control of the weed, but fire frequency should increase to at least once every 2 years. For the farm, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.