998 resultados para fine tracking
Resumo:
星间激光通讯中,精跟踪起着十分重要的作用,而精密偏转镜(FSM)是精跟踪系统中最为关键的部件.基于光学矢量反射定律,推导得到了FSM的精确光学特性,这一特性为精跟踪控制系统提供了精确的理论依据.设计了基于FSM精确光学特性的精跟踪控制系统,对系统整定所用的单纯形法进行了两点重要改进,并对所设计的精跟踪系统进行了数字模拟,由此实现了对FSM的精确控制,提高了精跟踪系统的精确性;将光学衍射超分辨原理应用到星间激光通讯中.利用三区位相光瞳滤波器的超分辨性能,改变光学系统的点扩散函数,从而改变接收端焦平面上的光强
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Resumo:
Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.
Resumo:
My thesis examines fine-scale habitat use and movement patterns of age 1 Greenland cod (Gadus macrocephalus ogac) tracked using acoustic telemetry. Recent advances in tracking technologies such as GPS and acoustic telemetry have led to increasingly large and detailed datasets that present new opportunities for researchers to address fine-scale ecological questions regarding animal movement and spatial distribution. There is a growing demand for home range models that will not only work with massive quantities of autocorrelated data, but that can also exploit the added detail inherent in these high-resolution datasets. Most published home range studies use radio-telemetry or satellite data from terrestrial mammals or avian species, and most studies that evaluate the relative performance of home range models use simulated data. In Chapter 2, I used actual field-collected data from age-1 Greenland cod tracked with acoustic telemetry to evaluate the accuracy and precision of six home range models: minimum convex polygons, kernel densities with plug-in bandwidth selection and the reference bandwidth, adaptive local convex hulls, Brownian bridges, and dynamic Brownian bridges. I then applied the most appropriate model to two years (2010-2012) of tracking data collected from 82 tagged Greenland cod tracked in Newman Sound, Newfoundland, Canada, to determine diel and seasonal differences in habitat use and movement patterns (Chapter 3). Little is known of juvenile cod ecology, so resolving these relationships will provide valuable insight into activity patterns, habitat use, and predator-prey dynamics, while filling a knowledge gap regarding the use of space by age 1 Greenland cod in a coastal nursery habitat. By doing so, my thesis demonstrates an appropriate technique for modelling the spatial use of fish from acoustic telemetry data that can be applied to high-resolution, high-frequency tracking datasets collected from mobile organisms in any environment.
Resumo:
Performance evaluation of object tracking systems is typically performed after the data has been processed, by comparing tracking results to ground truth. Whilst this approach is fine when performing offline testing, it does not allow for real-time analysis of the systems performance, which may be of use for live systems to either automatically tune the system or report reliability. In this paper, we propose three metrics that can be used to dynamically asses the performance of an object tracking system. Outputs and results from various stages in the tracking system are used to obtain measures that indicate the performance of motion segmentation, object detection and object matching. The proposed dynamic metrics are shown to accurately indicate tracking errors when visually comparing metric results to tracking output, and are shown to display similar trends to the ETISEO metrics when comparing different tracking configurations.
Resumo:
Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.
Resumo:
Software transactional memory (STM) has been proposed as a promising programming paradigm for shared memory multi-threaded programs as an alternative to conventional lock based synchronization primitives. Typical STM implementations employ a conflict detection scheme, which works with uniform access granularity, tracking shared data accesses either at word/cache line or at object level. It is well known that a single fixed access tracking granularity cannot meet the conflicting goals of reducing false conflicts without impacting concurrency adversely. A fine grained granularity while improving concurrency can have an adverse impact on performance due to lock aliasing, lock validation overheads, and additional cache pressure. On the other hand, a coarse grained granularity can impact performance due to reduced concurrency. Thus, in general, a fixed or uniform granularity access tracking (UGAT) scheme is application-unaware and rarely matches the access patterns of individual application or parts of an application, leading to sub-optimal performance for different parts of the application(s). In order to mitigate the disadvantages associated with UGAT scheme, we propose a Variable Granularity Access Tracking (VGAT) scheme in this paper. We propose a compiler based approach wherein the compiler uses inter-procedural whole program static analysis to select the access tracking granularity for different shared data structures of the application based on the application's data access pattern. We describe our prototype VGAT scheme, using TL2 as our STM implementation. Our experimental results reveal that VGAT-STM scheme can improve the application performance of STAMP benchmarks from 1.87% to up to 21.2%.
Resumo:
This technical memorandum describes a developing project under the direction of NOAA’s Biogeography Branch in consultation with the National Park Service and US Geological Survey to understand and quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands. The purpose of this report is to describe and disseminate the initial results from the project and to share information on the location of acoustic receivers and species electronic tag ID codes. The Virgin Islands Coral Reef National Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), was established by Executive Order in 2000, but resources within the monument are poorly documented and the degree of connectivity to VIIS is unknown. Whereas, VICRNM was established with full protection from resource exploitation, VIIS has incurred resource harvest by fishers since 1956 as allowed in its enabling legislation. Large changes in local reef communities have occurred over the past several decades, in part due to overexploitation. In order to better understand the habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St, John, an array of hydroacoustic receivers was deployed while a variety of reef fish species were acoustically tagged. In July 2006, nine receivers with a detection range of ca. 350 m were deployed in Lameshur Bay on the south shore of St. John, within VIIS. Receivers were located adjacent to reefs and in seagrass beds, inshore and offshore of these reefs. It was found that lane snappers and bluestriped grunts showed diel movement from reef habitats during daytime hours to offshore seagrass bed at night. Timing of migrations was highly predictable and coincided with changes in sunrise and sunset over the course of the year. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. In April 2007, 21 additional receivers were deployed along much of the south shore of St. John (ca. 20 km of shoreline). This current array will address broader-scale movement among management units and examine the potential benefits of the VICRNM to provide adult “spillover” into VIIS and adjacent harvested areas. The results from this work will aid in defining fine to moderate spatial scales of reef fish habitat affinities and in designing and evaluating marine protected areas.
Resumo:
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat ‘hotspots’ of high space use. Movement modelling showed sharks preferred habitats characterised by strong sea-surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge south-west of the Azores. In these main regions, and sub-areas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently ‘tracks’ oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
At QUB we have constructed a system that allows students to self-assess their capability on the fine grained learning outcomes for a module and to update their record as the term progresses. In the system each of the learning outcomes are linked to the relevant teaching session (lectures and labs) and to [online] resources that students can access at any time. Students can structure their own learning experience to their needs to attain the learning outcomes. The system keeps a history of the student’s record, allowing the lecturer to observe how the students’ abilities progress over the term and to compare it to assessment results. The system also keeps of any of the resource links that student has clicked on.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.