728 resultados para fibre matrix
Resumo:
Numerical models of the intervertebral disc, which address mechanical questions commonly make use of the difference in water content between annulus and nucleus, and thus fluid and solid parts are separated. Despite this simplification, models remain complex due to the anisotropy and nonlinearity of the annulus and regional variations of the collagen fibre density. Additionally, it has been shown that cross-links make a large contribution to the stiffness of the annulus. Because of this complex composite structure, it is difficult to reproduce several sets of experimental data with one single set of material parameters. This study addresses the question to which extent the ultrastructure of the intervertebral disc should be modelled so that its moment-angle behaviour can be adequately described. Therefore, a hyperelastic constitutive law, based on continuum mechanical principles was derived, which does not only consider the anisotropy from the collagen fibres, but also interactions among the fibres and between the fibres and the ground substance. Eight ovine lumbar intervertebral discs were tested on a custom made spinal loading simulator in flexion/extension, lateral bending and axial rotation. Specimen-specific geometrical models were generated using CT images and T2 maps to distinguish between annulus fibrosus and nucleus pulposus. For the identification of the material parameters the annulus fibrosus was described with two scenarios: with and without fibre-matrix and fibre-fibre interactions. Both scenarios showed a similar behaviour on a load displacement level. Comparing model predictions to the experimental data, the mean RMS of all specimens and all load cases was 0.54±0.15° without the interaction and 0.54±0.19° when the fibre-matrix and fibre-fibre interactions were included. However, due to the increased stiffness when cross-links effects were included, this scenario showed more physiological stress-strain relations in uniaxial and biaxial stress states. Thus, the present study suggests that fibre-matrix and fibre-fibre interactions should be considered in the constitutive law when the model addresses questions concerning the stress field of the annulus fibrosus.
Resumo:
In this study, fibre-reinforced self-compacting concretes were developed for precast building components, incorporating either adherent metal fibres or polymeric synthetic slipping fibres or a combination of both. To achieve the warranted workability, compressive and splitting tensile strengths, compositions were determined by preliminary tests on self-compacting materials with various proportions of metal fibres. Bending tests in controlled deflection confirmed the positive contribution of fibres in the mechanical behaviour of self-compacting concrete. The comparison between vibrated and self-compacting concretes of similar mechanical characteristics indicated a possible better fibre-matrix bond in the case of self-compacting types. The results also showed that the properties of the hybrid fibre-reinforced self-compacting concrete could be inferred from the properties of the individual single-fibre reinforcements and their respective proportions through simple mix-rules.
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.
Resumo:
The theory part of the Master’s thesis introduces fibres with high tensile strength and elongation used in the production of paper or board. Strong speciality papers are made of bleached softwood long fibre pulp. The aim of the thesis is to find new fibres suitable for paper making to increase either tensile strength, elongation or both properties. The study introduces how fibres bond and what kind of fibres give the strongest bonds into fibre matrix. The fibres that are used the in manufacturing of non-wovens are long and elastic. They are longer than softwood cellulose fibres. The end applications of non-wovens and speciality papers are often the same, for instance, wet napkins or filter media. The study finds out which fibres are used in non-wovens and whether the same fibres could be added to cellulose pulp as armature fibres, what it would require for these fibres to be blended in cellulose, how they would bind with cellulose and whether some binding agents or thermal bonding, such as hot calendaring would be necessary. The following fibres are presented: viscose, polyester, nylon, polyethylene, polypropylene and bicomponent fibres. In the empiric part of the study the most suitable new fibres are selected for making hand sheets in laboratory. Test fibres are blended with long fibre cellulose. The test fibres are viscose (Tencel), polypropylene and polyethylene. Based on the technical values measured in the sheets, the study proposes how to continue trials on paper machine with viscose, polyester, bicomponent and polypropylene fibres.
Resumo:
The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Because of their application that normally demands high mechanical strength combined with low weight, the fibre/matrix interface became an important parameter concerning structural life. The problem of moisture absorption in materials has received attention in experimental studies on a composite systems as well as from a theorical point of view. The fibre/matrix interface plays an important role in the structural behaviour of composites due to the fact that load transfer from matrix to reinforce occurs at the interface. In this case the study of compatibility of fibre/matrix/environmental is essential to ensure a product that attend structural objectives, many times without failure possibilities. The composite used in this investigation is the carbon fibre/matrix epoxy composite, which was immersed in sea water standard during 94 days at 60 degrees C, submitted to tensile and compressive tests to study the influence of moisture absorption on mechanical behaviour. The interface was investigated through fracture surface analysis by SEM and a strong interface and a good adhesion fibre/matrix was observed.
Resumo:
The most relevant thermo-mechanical properties of SiC or C based CFCCs are high strength, high toughness, low weight, high reliability, thermal shock and fatigue resistance. Thanks to these special characteristics, the CFCCs are the best candidates to substitute metals and monolithic ceramics, traditionally employed to realize components in energy, aeronautic and nuclear fields. Among the commonly techniques for the CFCCs production, CVI still represents the most significant one. Its main advantages are the versatility, the high quality deposits and the fact that it is conducted under mild temperature conditions. On the other hand, this technique is quite complex, therefore the set up of all process parameters needs long development time. The main purpose of the present study was to analyze the parameters controlling the CVD and CVI processes. Specifically, deposition and infiltration of SiC and Py-C tests were conducted on non-porous and porous substrates. The experiments were performed with a pilot size Isothermal/Isobaric CVI plant, designed and developed by ENEA. To guarantee the control of the process parameters, a previously optimization of the plant was needed. Changing temperature, pressure, flow rates and methane/hydrogen ratio, the Py-C deposition rate value, for an optimal fibre/matrix interphase thickness, was determined. It was also underlined the hydrogen inhibiting effect over the Py-C deposition rate. Regarding SiC morphologies, a difference between the inner and outer substrate surfaces was observed, as a consequence of a flow rate non-uniformity. In the case of the Cf/C composites development, the key parameter of the CVI process was the gas residence time. In fact, the hydrogen inhibiting effect was evident only with high value of residence time. Furthermore, lower the residence time more homogeneous the Py-C deposition rate was obtained along the reaction chamber axis. Finally, a CVD and CVI theoretical modelling was performed.
Resumo:
The effect of mechano-chemically bound polypropylene modifiers on the mechanical performance and thermal-oxidative stability of polypropylene composites has been studied. The mechanical performance of unmodified polypropylene containing silane coupled glass and Rockwool (mineral) fibre was poor by comparison with a similar commercially produced glass reinforced composite; this was attributed to poor fibre-matrix adhesion. Mechano-chemical binding with unsaturated additives was obtained in the presence of a free radical initiator (di-cumyl peroxide). This process was inhibited by stabilisers present in commercial grades of polypropylene composites by chemical bond formation between the chemically bound modifier and the silane coupling agent on the fibre surface, resulting in a dramatic improvement in the mechanical properties, dimensional stability and retention of mechanical performance after immersion in fluids typically found in under-bonnet environments.A feature unique to some of these modifiers was their ability not only to enhance the mechanical properties of polypropylene composites to levels substantially in excess of currently available commercial materials, but their ability to act as effective thermal-oxidative polypropylene stabilisers. The mode of action was shown to be a chain-breaking mechanism and as a result of the high binding levels achieved during melt processing, these modifiers were able to efficiently stabilise polypropylene in the most severe volatilising and solvent-extracting environments, thus giving much better protection to the polymer than currently available commercially stabilised grades of polypropylene.
Resumo:
The composition of the extracellular matrix (ECM) of skeletal muscle fibres is a unique environment that supports the regenerative capacity of satellite cells; the resident stem cell population. The impact of environment has great bearing on key properties permitting satellite cells to carry out tissue repair. In this study, we have investigated the influence of the ECM and glycolytic metabolism on satellite cell emergence and migration- two early processes required for muscle repair. Our results show that both influence the rate at which satellite cells emerge from the sub-basal lamina position and their rate of migration. These studies highlight the necessity of performing analysis of satellite behaviour on their native substrate and will inform on the production of artificial scaffolds intended for medical uses.
Resumo:
Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.