996 resultados para fiber spinning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PP has been getting much attention over the years because it is a very durable polymer commonly used in aggressive environments including automotive battery casings, fuel containers etc. They are used to make bottles, fibers for clothing, components in cars etc. However, it has some shortcomings such as low dimensional and thermal stability. Materials such as metal oxides with sizes of the order 1–50 nm have received a great deal of attention because of their versatile applications in polymer/ inorganic nanocomposites, optoelectronic devices, biomedical materials, and other areas. They are stable under harsh process conditions and also regarded as safe materials to human beings and animals. In the present investigation, PP is modified by incorporating metal oxide nanoparticles such as ZnO and TiO2 by simple melt mixing method. Melt spinning method was used to prepare PP/metal oxide nanocomposite fibers. Various studies have been carried out on these composites and fibers. In the first part of the study, ZnO nanoparticles were prepared from ZnCl2 and NaOH in presence of chitosan, PVA, ethanol and starch. This is a simple and inexpensive method compared to other methods. Change in morphology and particle size of ZnO were studied. Least particle size was obtained in chitosan medium. The particles were characterized by using XRD, SEM, TEM, TGA and EDAX. Antibacterial properties of ZnO prepared in chitosan medium (NZO) and commercial zinc oxide (CZO) were evaluated using a gram positive and a gram negative bacteria

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel lower critical solution temperature (LCST) membrane forming system containing cellulose acetate (CA)/poly (vinyl pyrrolidone) (PVP 3 60K)/N-methyl-2-pyrrolidone (NMP)/1,2-propanediol with a weight ratio of 24.0:5.0:62.6:8.4 had been developed. CA hollow fiber ultrafiltration (UF) membranes were fabricated using the dry-wet spinning technique. The fibers were post-treated with a 200 mg/L hypochlorite solution over a period of 6 It at pH 7. The experimental results showed that water flux of a membrane decreased while retention increased with increasing CA concentration in a dope. It was concluded that the membrane pore size decreased with increasing CA concentration. The membrane fouling tendency for BSA was 3 times higher than that for PVP 24K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non-solvent precipitation, dispersion destabilization, ionic cross-linking, and polyelectrolyte complexation. One-step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post-treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on a theoretical study of activated polarization pulling and de-correlation of signal and pump states of polarization based on an advanced vector model of a fiber Raman amplifier accounting for random birefringence and two-scale fiber spinning. As a result, we have found that it is possible to provide de-correlation and simultaneously suppress PDG and PMD to 1.2 dB and 0.035 ps/km1/2 respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on a theoretical study of activated de-correlation of pump and signal states of polarization in a fiber Raman amplifier based on 10 km of fiber with two-scale fiber spinning profile. As a result of the decorrelation, polarization dependent gain can be suppressed to 0.11 dB, PMD to 0.037 ps/km1/2 and gain can be increased to 15 dB. © 2012 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on a theoretical study of activated de-correlation of signal and pump states of polarization based on an advanced vector model of a fiber Raman amplifier accounting for random birefringence and periodic fiber spinning. © 2012 OSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a facile method to produce elastic conducting fibers using a continuous flow wet-spinning approach. The spun fibers were highly stretchable, similar to the elastomeric polymer used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple continuous flow wet-spinning method to achieve mechanical reinforcement of the two oppositely charged biopolymers chitosan and gellan gum is described. The mechanical properties of these biopolymers are influenced by the order of addition. Using a facile method for mechanical reinforcement of gellan gum/chitosan fibers resulted in increases in Young's modulus, tensile strength, and toughness. Spinning gellan gum into chitosan resulted in the strongest fibers. We show that our fibers can provide a mechanical alternative for bio-fibers without the need of cross-linking. It is demonstrated that the fibers become ionically conducting in the presence of water vapor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule-precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple fiber spinning method used to fabricate elastomeric composite fibers with outstanding mechanical performance is demonstrated. By taking advantage of the large size of as-prepared graphene oxide sheets (in the order of tens of micrometers) and their liquid crystalline behavior, elastomeric composite fibers with outstanding low strain properties have been fabricated without compromising their high strain properties. For example, the modulus and yield stress of the parent elastomer improved by 80- and 40-fold, respectively, while maintaining the high extensibility of ∼400% strain inherent to the parent elastomer. This outstanding mechanical performance was shown to be dependent upon the GO sheet size. Insights into how both the GO sheet size dimension and dispersion parameters influence the mechanical behavior at various applied strains are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3682464]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospinning uses electrostatic forces to create nanofibers that are far smaller than conventional fiber spinning process. Nanofibers made with chitosan were created and techniques to control fibers diameter and were well developed. However, the adsorption of porcine parvovirus (PPV) was low. PPV is a small, nonenveloped virus that is difficult to remove due to its size, 18-26 nm in diameter, and its chemical stability. To improve virus adsorption, we functionalized the nanofibers with a quaternized amine, forming N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC). This was blended with additives to increase the ability to form HTCC nanofibers. The additives changed the viscosity and conductivity of the electrospinning solution. We have successfully synthesized and functionalized HTCC nanofibers that absorb PPV. HTCC blend with graphene have the ability to remove a minimum of 99% of PPV present in solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications.