766 resultados para ferrite deformation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304L, 304 and 304 as-cast, during hot working has been studied. Compression and torsion tests were conducted in the temperature range 1100 to 1250 degrees C and strain rate range 0.001 to 100 s(-1) on these materials, Ferrite formation occurs during deformation at temperatures above 1150 degrees C and strain rates above 10 s(-1), in stainless steel type AISI 304L and 304. The tendency for the formation of ferrite is more in as-cast 304 than in wrought 304, In as-cast 304 the ferrite forms at lower temperatures and strain rates, The tendency for the ferrite formation is more in torsion than in compression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Martensite-ferrite microstructures were produced in four microalloyed steels A (Fe-0.44C-Cr-V), B (Fe-0.26C-Cr-V), C (Fe-0.34C-Cr-Ti-V), and D (Fe-0.23C-Cr-V) by intercritical annealing. SEM analysis reveals that steels A and C contained higher martensite fraction and finer ferrite when compared to steels B and D which contained coarser ferrite grains and lower martensite fraction. A network of martensite phase surrounding the ferrite grains was found in all the steels. Crystallographic texture was very weak in these steels as indicated by EBSD analysis. The steels contained negligible volume fraction of retained austenite (approx. 3-6%). TEM analysis revealed the presence of twinned and lath martensite in these steels along with ferrite. Precipitates (carbides and nitrides) of Ti and V of various shapes with few nanometers size were found, particularly in the microstructures of steel B. Work hardening behavior of these steels at ambient temperature was evaluated through modified Jaoul-Crussard analysis, and it was characterized by two stages due to presence of martensite and ferrite phases in their microstructure. Steel A displayed large work hardening among other steel compositions. Work hardening behavior of the steels at a warm working temperature of 540 A degrees C was characterized by a single stage due to the decomposition of martensite into ferrite and carbides at this temperature as indicated by SEM images of the steels after warm deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study has been made of the microstructure of the thermally assisted band in a low carbon ferrite-pearlite steel, resulting from high speed torsional testing with an average strain rate of about 1500 s−1. Metallographic examination showed that there are several fine shear bands distributed over a deformed region (the gauge length of the specimen). The width of these bands is estimated to be of the order of magnitude of 50 μm, and the spacing between them is roughly about 100 μm. Detailed scanning electron microscopy studies indicate that damage of the microstructure within the band is very apparent, as evidenced by microcrack initiation and coalescence along the shear deformation band. However, there is no evidence that the material in the band had become microcrystalline or non-crystalline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot compression tests were carried out on 9Cr–Nb–V heat resistant steels in the temperature range of 600–1200 °C and the strain rate range of 10−2–100 s−1 to study their deformation characteristics. The full recrystallization temperature and the carbon-free bainite phase transformation temperature were determined by the slope-change points in the curve of mean flow stress versus the inverse of temperature. The parameters of the constitutive equation for the experimental steels were calculated, including the stress exponent and the activation energy. The lower carbon content in steel would increase the fraction of precipitates by increasing the volume of dynamic strain-induced (DSIT) ferrite during deformation. The ln(εc) versus ln(Z) and the ln(σc) versus ln(Z) plots for both steels have similar trends. The efficiency of power dissipation maps with instability maps merged together show excellent workability from the strain of 0.05 to 0.6. The microstructure of the experimental steels was fully recrystallized upon deformation at low Z value owing to the dynamic recrystallization (DRX), and exhibited a necklace structure under the condition of 1050 °C/0.1 s−1 due to the suppression of the secondary flow of DRX. However, there were barely any DRX grains but elongated pancake grains under the condition of 1000 °C/1 s−1 because of the suppression of the metadynamic recrystallization (MDRX).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial loads of load bearing elements impact on the vibration characteristics. Several methods have been developed to quantify axial loads and hence axial deformations of individual structural members using their natural frequencies. Nevertheless, these methods cannot be applied to individual members in structural framing systems as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses modal strain energy phenomenon to quantify axial deformations of load bearing elements of structural framing systems. The procedure is illustrated through examples and results confirm that the proposed method has an ability to quantify the axial deformations of individual elements of structural framing systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration characteristics of structural members are significantly influenced by the axial loads and hence axial deformation of the member. Numerous methods have been developed to quantify the axial loads in individual structural members using their natural frequencies. However, the findings of these methods cannot be applied to individual members in a structural framing system as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses the modal flexibility parameter to quantify axial deformations in load bearing elements of structural framing systems. The proposed method is illustrated through examples and results highlight that the method can be used to quantify the axial deformations of Individual elements of structural framing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Because no mesh is used, the meshfree methods show good potential for the large deformation analysis. In this paper, a local meshfree formulation, based on the local weak-forms and the updated Lagrangian (UL) approach, is developed for the large deformation analysis. To fully employ the advantages of meshfree methods, a simple and effective adaptive technique is proposed, and this procedure is much easier than the re-meshing in FEM. Numerical examples of large deformation analysis are presented to demonstrate the effectiveness of the newly developed nonlinear meshfree approach. It has been found that the developed meshfree technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To accurately and effectively simulate large deformation is one of the major challenges in numerical modeling of metal forming. In this paper, an adaptive local meshless formulation based on the meshless shape functions and the local weak-form is developed for the large deformation analysis. Total Lagrangian (TL) and the Updated Lagrangian (UL) approaches are used and thoroughly compared each other in computational efficiency and accuracy. It has been found that the developed meshless technique provides a superior performance to the conventional FEM in dealing with large deformation problems for metal forming. In addition, the TL has better computational efficiency than the UL. However, the adaptive analysis is much more efficient using the UL approach than using in the TL approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that when a soft polymer like Poly(3-hexyl-thiophene) wraps multiwall nanotubes by coiling around the main axis, a localized deformation of the nanotube structure is observed. High resolution transmission electron microscopy shows that radial compressions of about 4% can take place, and could possibly lead to larger interlayer distance between the nanotube inner walls and reduce the innermost nanotube radius. The mechanical stress due to the polymer presence was confirmed by Raman spectroscopic observation of a gradual upshift of the carbon nanotube G-band when the polymer content in the composites was progressively increased. Vibrational spectroscopy also indicates that charge transfer from the polymer to the nanotubes is responsible for a peak frequency relative downshift for high P3HT-content samples. Continuously acquired transmission electron microscopy images at rising temperature show the MWCNT elastic compression and relaxation due to polymer rearrangement on the nanotube surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Column elements at a certain level in building are subjected to loads from different tributary areas. Consequently, differential axial deformation among these elements occurs. Adverse effects of differential axial deformation increase with building height and geometric complexity. Vibrating wire, electronic strain and external mechanical strain gauges are used to measure the axial deformations to take adequate provisions to mitigate the adverse effects. These gauges require deploying in or on the elements during their construction in order to acquire necessary measurements continuously. The use of these gauges is therefore inconvenient and uneconomical. This highlights the need for a method to quantify the axial deformation using ambient measurements. This paper proposes a comprehensive vibration based method. The unique capabilities of the proposed method present through an illustrative example.