980 resultados para feeding strategy
Resumo:
A feeding strategy model is proposed using stomach content and resource availability data as a modification to Costello (1990) and Amundsen et al. (1996). Incorporation of feeding electivity index (E) instead of the prey-specific abundance signifies the importance of resource availability in prey selection as well as the predator's ability to specialize, generalize or avoid particular prey items at the individual and population level.
Resumo:
Two 8-week growth trials were conducted to determine the effect of continuous (CF) versus 2 meals day(-1) (MF) feeding and 30% starch versus 30% glucose diets on the carbohydrate utilization of 9.0-g white sturgeon and 0.56-g hybrid tilapia. The two trials were conducted under similar conditions except that sturgeon were kept at 18.5 degrees C in a flow-through system and tilapia were kept at 26 degrees C in a recirculating system. Significantly (P less than or equal to 0.05) higher specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), body lipid content and liver glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) activities were observed in the CF than MF sturgeon. Only SGR, FE and PER were higher in sturgeon fed the starch than the glucose diets. Only higher liver G6PDH and malic enzyme (ME) activities were observed in the CF than MF tilapia but higher SGR, FE, PER and liver G6PDH, 6PGDH and ME activities were observed in tilapia fed the starch diet than those fed the glucose diet. This suggested that carbohydrate utilization by sturgeon was more affected by feeding strategy whereas tilapia was more affected by carbohydrate source. Furthermore, white sturgeon can utilize carbohydrates better than hybrid tilapia regardless of feeding strategy and carbohydrate source.
Resumo:
Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.
Resumo:
P>A 36-day trial was conducted to determine the effects of repetitive periods of food restriction and refeeding on growth and energy metabolism in pacu (Piaractus mesopotamicus). A total 264 juvenile fish (36.9 +/- 2.8 g) were fed with the experimental diet for 36 days using three regimes: (i) feeding daily to satiation (FD); (ii) no feed for 3 days, then feeding the same amount offered to the control groups for the next 3 days (NF/R controlled); and (iii) no feed for 3 days, then feeding to apparent satiation for the next 3 days (NF/R at satiation). The treatments were distributed into four tanks each. WG and SGR were higher in FD group. Fish refed showed hyperphagia just up to the second day of refeeding. The worst feed conversion rate and the lowest protein efficiency ratio were found in fish NF/R controlled. The lowest values of visceral fat somatic index were found in both fasted fish groups, particularly in NF/R at satiation. The LL and glycogen concentrations, and the hepatosomatic index were all elevated in both feed restricted fish. Muscle lipid showed a tendency to decrease after the cycle of fasting and refeeding. Plasma free fatty acids and glucose levels were elevated in fish subjected to feeding restrictions while serum triglycerides levels were reduced. Triiodothyronine levels were significantly depressed in fish from the NF/R-controlled group and remained at the same levels as the control fish in fish NF/R at satiation. Results indicated that fish subjected to cyclic periods of 3-day satiation or controlled feeding after 3-days of fasting were unable to achieve the final body weight of fish fed to satiation after 36 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A 12-wk experiment was conducted to investigate the effect of feeding program, dietary fiber, and CP content of the diet on productive performance of Ross broiler breeder hens (41 wk of age). There were 12 treatments arranged factorially with 2 levels of CP (14.5 vs. 17.4%), 3 fiber sources (0 vs. 3% inulin vs. 3% cellulose), and 2 levels of feed intake (160 vs. 208 g/d) that corresponded to restricted (R) or ad libitum (AL) feeding systems. The experimental diets contained 2,800 kcal ME with either 0.65 (14.5% CP) or 0.78% Lys (17.4% CP).
Resumo:
P>A 36-day trial was conducted to determine the effects of repetitive periods of food restriction and refeeding on growth and energy metabolism in pacu (Piaractus mesopotamicus). A total 264 juvenile fish (36.9 +/- 2.8 g) were fed with the experimental diet for 36 days using three regimes: (i) feeding daily to satiation (FD); (ii) no feed for 3 days, then feeding the same amount offered to the control groups for the next 3 days (NF/R controlled); and (iii) no feed for 3 days, then feeding to apparent satiation for the next 3 days (NF/R at satiation). The treatments were distributed into four tanks each. WG and SGR were higher in FD group. Fish refed showed hyperphagia just up to the second day of refeeding. The worst feed conversion rate and the lowest protein efficiency ratio were found in fish NF/R controlled. The lowest values of visceral fat somatic index were found in both fasted fish groups, particularly in NF/R at satiation. The LL and glycogen concentrations, and the hepatosomatic index were all elevated in both feed restricted fish. Muscle lipid showed a tendency to decrease after the cycle of fasting and refeeding. Plasma free fatty acids and glucose levels were elevated in fish subjected to feeding restrictions while serum triglycerides levels were reduced. Triiodothyronine levels were significantly depressed in fish from the NF/R-controlled group and remained at the same levels as the control fish in fish NF/R at satiation. Results indicated that fish subjected to cyclic periods of 3-day satiation or controlled feeding after 3-days of fasting were unable to achieve the final body weight of fish fed to satiation after 36 days.
Resumo:
In Finland, suckler cow production is carried out in circumstances characterized by a long winter period and a short grazing period. The traditional winter housing system for suckler cows has been insulated or uninsulated buildings, but there is a demand for developing less expensive housing systems. In addition, more information is needed on new winter feeding strategies, carried out in inexpensive winter facilities with conventional (hay, grass silage, straw) or alternative (treated straw, industrial by-product, whole-crop silage) feeds. The new feeding techniques should not have any detrimental effects on animal welfare in order to be acceptable to both farmers and consumers. Furthermore, no official feeding recommendations for suckler cows are available in Finland and, thus, recommendations for dairy cows have been used. However, this may lead to over- or underfeeding of suckler cows and, finally, to decreased economic output. In Experiment I, second-calf beef-dairy suckler cows were used to compare the effects of diets based on hay (H) or urea-treated straw (US) at two feeding levels (Moderate; M vs. Low; L) on the performance of cows and calves. Live weight (LW) gain during the indoor feeding was lower for cows on level L than on level M. Cows on diet US lost more LW indoors than those on diet H. The cows replenished the LW losses on good pasture. Calf LW gain and cow milk production were unaffected by the treatments. Conception rate was unaffected by the treatments but was only 69%. Urea-treated straw proved to be a suitable winter feed for spring-calving suckler cows. Experiment II studied the effects of feeding accuracy on the performance of first- and second-calf beef-dairy cows and calves. In II-1, the day-to-day variation in the roughage offered ranged up to ± 40%. In II-2, the same variation was used in two-week periods. Variation of the roughages offered had minor effects on cow performance. Reproduction was unaffected by the feeding accuracy. Accurate feeding is not necessary for young beef-dairy crosses, if the total amount of energy offered over a period of a few weeks fulfills the energy requirements. Effects of feeding strategies with alternative feeds on the performance of mature beef-dairy and beef cows and calves were evaluated in Experiment III. Two studies consisted of two feeding strategies (Step-up vs. Flat-rate) and two diets (Control vs. Alternative). There were no differences between treatments in the cow LW, body condition score (BCS), calf pre-weaning LW gain and cow reproduction. A flat-rate strategy can be practised in the nutrition of mature suckler cows. Oat hull based flour-mill by product can partly replace grass silage and straw in the winter diet. Whole-crop barley silage can be offered as a sole feed to suckler cows. Experiment IV evaluated during the winter feeding period the effects of replacing grass silage with whole-crop barley or oat silage on mature beef cow and calf performance. Both whole-crop silages were suitable winter feeds for suckler cows in cold outdoor winter conditions. Experiment V aimed at assessing the effects of daily feeding vs. feeding every third day on the performance of mature beef cows and calves. No differences between the treatments were observed in cow LW, BCS, milk production and calf LW. The serum concentrations of urea and long-chain fatty acids were increased on the third day after feeding in the cows fed every third day. Despite of that the feeding every third day is an acceptable feeding strategy for mature suckler cows. Experiment VI studied the effects of feeding levels and long-term cold climatic conditions on mature beef cows and calves. The cows were overwintered in outdoor facilities or in an uninsulated indoor facility. Whole-crop barley silage was offered either ad libitum or restricted. All the facilities offered adequate shelter for the cows. The restricted offering of whole-crop barley silage provided enough energy for the cows. The Finnish energy recommendations for dairy cows were too high for mature beef breed suckler cows in good body condition at housing, even in cold conditions. Therefore, there is need to determine feeding recommendations for suckler cows in Finland. The results showed that the required amount of energy can be offered to the cows using conventional or alternative feeds provided at a lower feeding level, with an inaccurate feeding, flat-rate feeding or feeding every third day strategy. The cows must have an opportunity to replenish the LW and BCS losses at pasture before the next winter. Production in cold conditions can be practised in inexpensive facilities when shelter against rain and wind, a dry resting place, adequate amounts of feed suitable for cold conditions and water are provided for the animals as was done in the present study.
Resumo:
Feeding habits and feeding strategy of red rockfish (Sebastes capensis) were studied from fish captured along most of the range of this species in coastal waters of South America. Stomach contents of 613 individuals, collected during 2003, were analyzed. Fish were obtained from six locations along the Chilean (23°S to 46°S) and Argentinian (43°S) coasts. The main prey items were Mysidacea (75.06% IRI), Osteichthyes (6.29% IRI),and Rhynchocinetes typus (6.03% IRI). Predator sex and size did not significantly affect the diet, but significant differences were found between locations. Four geographical areas, discriminated by prey occurrence and frequencies, were determined: three on the Pacific coast and one on the Atlantic coast. These areas correspond roughly with biogeographic zones described for the Chilean and southern Argentinian coasts. The feeding strategy index (FSI) indicated a specialized feeding strategy for S. capensis for most of its range. However, the FSI does not include the behaviour of a predator, and the FSI must be interpreted carefully for fishes like S. capensis that are passive ambush feeders. The abundance and availability of different prey may explain both the geographic differences in dietary composition and the specialized feeding strategy of S. capensis.
Resumo:
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d -2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d -18, -9, -5, and -2. Plasma tumor necrosis factor-alpha concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.
Resumo:
Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (Dracaena guianensis) with those in a closely related omnivorous species (Tupinambis merianae). Our data show that juvenile D. guianensis differ from T. merianae in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult Dracaena and Tupinambis revealed that Dracaena typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although Dracaena is slow, these animals are very effective in crushing and processing hard-shelled prey. J. Exp. Zool. 317A:371381, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The feeding ecology of the American freshwater goby Ctenogobius shufeldti in a low salinity salt-marsh habitat in the Paranagua Bay estuarine complex (Brazil) was assessed through the gut analysis of 632 individuals. The effects of a set of abiotic factors (type of sediment, salinity, temperature and estuarine reach), season and body size on dietary composition were analysed. Seasonal and size-related changes in feeding strategy, feeding intensity and trophic level were assessed. The effects of gape and body size on prey size use were also analysed. The results showed that C. shufeldti is a typical omnivorous, generalized benthic predator of low trophic levels throughout the seasons and size classes, feeding on 56 dietary items; tanaids, chlorophyte algae, ostracods, gastropods, detritus and benthic diatoms made up the bulk of its diet. The tanaid Kalliapseudes schubarti was the main prey item in both numerical and volumetric terms. The gut fullness was persistently high across the seasons. As expected for a typical generalized, opportunistic omnivorous feeder: (1) seasonal and spatial-temporal variability of abiotic factors had a significant effect on diet structure, (2) season accounted for most of the dietary variation and (3) diet composition and the size of prey consumed did not vary across the size classes.
Resumo:
Etmopterus spinax is one of the most abundant predators of the upper continental slope off the Algarve (southern Portugal), where it is captured in large quantities in deep-water fisheries. The feeding habits of E. spinax off the Algarve were investigated through the analysis of stomach contents of 376 individuals. Prey composition was described and maturity, sex and size related variations in the diet analysed. The overall diet of E. spinax suggested a fairly generalized benthopelagic foraging behaviour primarily tuned to pelagic macroplankton/microneckton, teleost fish and cephalopods. Sex and maturity related differences in the diet were not significant. Two main ontogenic diet shifts were observed at about 17 and 28 cm total length. Small and medium sized immature sharks had a diet dominated by eurybathic crustaceans, chiefly Meganyctiphanes norvegica and Pasiphaea sivado. Larger individuals consumed more teleosts and cephalopods, in part associated with scavenging as a new feeding strategy. With increasing shark size the diet diversified both in terms of resources exploited and prey size.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.