891 resultados para federated search
Resumo:
Many of the research institutions and universities across the world are facilitating open-access (OA) to their intellectual outputs through their respective OA institutional repositories (IRs) or through the centralized subject-based repositories. The registry of open access repositories (ROAR) lists more than 2850 such repositories across the world. The awareness about the benefits of OA to scholarly literature and OA publishing is picking up in India, too. As per the ROAR statistics, to date, there are more than 90 OA repositories in the country. India is doing particularly well in publishing open-access journals (OAJ). As per the directory of open-access journals (DOAJ), to date, India with 390 OAJs, is ranked 5th in the world in terms of numbers of OAJs being published. Much of the research done in India is reported in the journals published from India. These journals have limited readership and many of them are not being indexed by Web of Science, Scopus or other leading international abstracting and indexing databases. Consequently, research done in the country gets hidden not only from the fellow countrymen, but also from the international community. This situation can be easily overcome if all the researchers facilitate OA to their publications. One of the easiest ways to facilitate OA to scientific literature is through the institutional repositories. If every research institution and university in India set up an open-access IR and ensure that copies of the final accepted versions of all the research publications are uploaded in the IRs, then the research done in India will get far better visibility. The federation of metadata from all the distributed, interoperable OA repositories in the country will serve as a window to the research done across the country. Federation of metadata from the distributed OAI-compliant repositories can be easily achieved by setting up harvesting software like the PKP Harvester. In this paper, we share our experience in setting up a prototype metadata harvesting service using the PKP harvesting software for the OAI-compliant repositories in India.
Resumo:
Les auteurs présentent un survol des logiciels de portails de bibliothèque. La notion de portail de bibliothèque est d’abord définie, puis les principales fonctionnalités de ce type de produit (métarecherche, personnalisation, authentification) sont présentées et expliquées. Un aperçu du marché des logiciels de portail est ensuite donné. Des questions reliées à la fiabilité des résultats et à la formation des utilisateurs sont également soulevées. // The authors present a brief review of software for library portals. The concept of library portals is defined and their main functionalities subsequently presented and explained (meta search engines, personalization, authentication). A general survey of the market for portal software is given before addressing certain questions about the reliability of their results and user training.
Resumo:
Court rapport de la conférence Access 2005 tenue à Edmonton, Canada. Résumé des idées et tendances principales exposées.
Resumo:
Contexte De nombreuses études, utilisant des indicateurs de qualité variés, ont démontré que la qualité des soins pour la dépression n’est pas optimale en première ligne. Peu de ces études ont examiné les facteurs associés à la réception d’un traitement adéquat, en particulier en tenant compte simultanément des caractéristiques individuelles et organisationnelles. L'association entre un traitement adéquat pour un épisode dépressif majeur (EDM) et une amélioration des symptômes dépressifs n'est pas bien établie dans des conditions non-expérimentales. Les objectifs de cette étude étaient de : 1) réaliser une revue systématique des indicateurs mesurant la qualité du traitement de la dépression en première ligne ; 2) estimer la proportion de patients souffrant d’EDM qui reçoivent un traitement adéquat (selon les guides de pratique clinique) en première ligne ; 3) examiner les caractéristiques individuelles et organisationnelles associées à l’adéquation du traitement pour la dépression ; 4) examiner l'association entre un traitement minimalement adéquat au cours des 12 mois précédents et l'évolution des symptômes dépressifs à 6 et 12 mois. Méthodes La littérature sur la qualité du traitement de la dépression a été examinée en utilisant un ensemble de mots-clés (« depression », « depressive disorder », « quality », « treatment », « indicator », « adequacy », « adherence », « concordance », « clinical guideline » et « guideline ») et « 360search », un moteur de recherche fédérée. Les données proviennent d'une étude de cohorte incluant 915 adultes consultant un médecin généraliste, quel que soit le motif de consultation, répondant aux critères du DSM-IV pour l’EDM dans la dernière année, nichés dans 65 cliniques de première ligne au Québec, Canada. Des analyses multiniveaux ont été réalisées. Résultats Bien que majoritairement développés à partir de guides de pratique clinique, une grande variété d'indicateurs a été observée dans la revue systématique de littérature. La plupart des études retenues ont utilisé des indicateurs de qualité rudimentaires, surtout pour la psychothérapie. Les méthodes utilisées étaient très variées, limitant la comparabilité des résultats. Toutefois, quelque soit la méthode choisie, la plupart des études ont révélé qu’une grande proportion des personnes souffrant de dépression n’ont pas reçu de traitement minimalement adéquat en première ligne. Dans notre échantillon, l’adéquation était élevée (> 75 %) pour un tiers des indicateurs de qualité mesurés, mais était faible (< 60 %) pour près de la moitié des mesures. Un peu plus de la moitié de l'échantillon (52,2 %) a reçu au moins un traitement minimalement adéquat pour la dépression. Au niveau individuel, les jeunes adultes (18-24 ans) et les personnes de plus de 65 ans avaient une probabilité moins élevée de recevoir un traitement minimalement adéquat. Cette probabilité était plus élevée pour ceux qui ont un médecin de famille, une assurance complémentaire, un trouble anxieux comorbide et une dépression plus sévère. Au niveau des cliniques, la disponibilité de la psychothérapie sur place, l'utilisation d'algorithmes de traitement, et le mode de rémunération perçu comme adéquat étaient associés à plus de traitement adéquat. Les résultats ont également montré que 1) la réception d'au moins un traitement minimalement adéquat pour la dépression était associée à une plus grande amélioration des symptômes dépressifs à 6 et à 12 mois; 2) la pharmacothérapie adéquate et la psychothérapie adéquate étaient toutes deux associées à de plus grandes améliorations dans les symptômes dépressifs, et 3) l'association entre un traitement adéquat et l'amélioration des symptômes dépressifs varie en fonction de la sévérité des symptômes au moment de l'inclusion dans la cohorte, un niveau de symptômes plus élevé étant associé à une amélioration plus importante à 6 et à 12 mois. Conclusions Nos résultats suggèrent que des interventions sont nécessaires pour améliorer la qualité du traitement de la dépression en première ligne. Ces interventions devraient cibler des populations spécifiques (les jeunes adultes et les personnes âgées), améliorer l'accessibilité à la psychothérapie et à un médecin de famille, et soutenir les médecins de première ligne dans leur pratique clinique avec des patients souffrant de dépression de différentes façons, telles que le développement des connaissances pour traiter la dépression et l'adaptation du mode de rémunération. Cette étude montre également que le traitement adéquat de la dépression en première ligne est associé à une amélioration des symptômes dépressifs dans des conditions non-expérimentales.
Resumo:
The access to medical literature collections such as PubMed, MedScape or Cochrane has been increased notably in the last years by the web-based tools that provide instant access to the information. However, more sophisticated methodologies are needed to exploit efficiently all that information. The lack of advanced search methods in clinical domain produce that even using well-defined questions for a particular disease, clinicians receive too many results. Since no information analysis is applied afterwards, some relevant results which are not presented in the top of the resultant collection could be ignored by the expert causing an important loose of information. In this work we present a new method to improve scientific article search using patient information for query generation. Using federated search strategy, it is able to simultaneously search in different resources and present a unique relevant literature collection. And applying NLP techniques it presents semantically similar publications together, facilitating the identification of relevant information to clinicians. This method aims to be the foundation of a collaborative environment for sharing clinical knowledge related to patients and scientific publications.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
The last decades have been characterized by a continuous adoption of IT solutions in the healthcare sector, which resulted in the proliferation of tremendous amounts of data over heterogeneous systems. Distinct data types are currently generated, manipulated, and stored, in the several institutions where patients are treated. The data sharing and an integrated access to this information will allow extracting relevant knowledge that can lead to better diagnostics and treatments. This thesis proposes new integration models for gathering information and extracting knowledge from multiple and heterogeneous biomedical sources. The scenario complexity led us to split the integration problem according to the data type and to the usage specificity. The first contribution is a cloud-based architecture for exchanging medical imaging services. It offers a simplified registration mechanism for providers and services, promotes remote data access, and facilitates the integration of distributed data sources. Moreover, it is compliant with international standards, ensuring the platform interoperability with current medical imaging devices. The second proposal is a sensor-based architecture for integration of electronic health records. It follows a federated integration model and aims to provide a scalable solution to search and retrieve data from multiple information systems. The last contribution is an open architecture for gathering patient-level data from disperse and heterogeneous databases. All the proposed solutions were deployed and validated in real world use cases.