962 resultados para fault-tolerance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiprocessor systems which afford a high degree of parallelism are used in a variety of applications. The extremely stringent reliability requirement has made the provision of fault-tolerance an important aspect in the design of such systems. This paper presents a review of the various approaches towards tolerating hardware faults in multiprocessor systems. It. emphasizes the basic concepts of fault tolerant design and the various problems to be taken care of by the designer. An indepth survey of the various models, techniques and methods for fault diagnosis is given. Further, we consider the strategies for fault-tolerance in specialized multiprocessor architectures which have the ability of dynamic reconfiguration and are suited to VLSI implementation. An analysis of the state-óf-the-art is given which points out the major aspects of fault-tolerance in such architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper we introduce a new energy-efficient fault-tolerant CMP architecture known as Redundant Execution using Critical Value Forwarding (RECVF). RECVF is based on two observations: (i) forwarding critical instruction results from the leading to the trailing core enables the latter to execute faster, and (ii) this speedup can be exploited to reduce energy consumption by operating the trailing core at a lower voltage-frequency level. Our evaluation shows that RECVF consumes 37% less energy than conventional dual modular redundant (DMR) execution of a program. It consumes only 1.26 times the energy of a non-fault-tolerant baseline and has a performance overhead of just 1.2%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. Malleable applications, where the number of processors on which the applications execute can be changed during executions, can make use of their malleability to better tolerate high failure rates. We present AdFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. AdFT framework includes cost models for evaluating the benefits of various fault tolerance actions including checkpointing, live-migration and rescheduling, and runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in application performance, and is effective even for petascale systems and beyond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. At such low MTBFs, employing periodic checkpointing alone will result in low efficiency because of the high number of application failures resulting in large amount of lost work due to rollbacks. In such scenarios, it is highly necessary to have proactive fault tolerance mechanisms that can help avoid significant number of failures. In this work, we have developed a mechanism for proactive fault tolerance using partial replication of a set of application processes. Our fault tolerance framework adaptively changes the set of replicated processes periodically based on failure predictions to avoid failures. We have developed an MPI prototype implementation, PAREP-MPI that allows changing the replica set. We have shown that our strategy involving adaptive process replication significantly outperforms existing mechanisms providing up to 20 percent improvement in application efficiency even for exascale systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces the notion of M-step robust fault tolerance for discrete-time systems where finite-time completion of a control manoeuvre is desired. It considers a scenario with two distinct objectives; a primary and secondary target are specified as sets to be reached in finite-time, whilst satisfying operating constraints on the states and inputs. The primary target is switched to the secondary target when a fault affects the system. As it is unknown when or if the fault will occur, the trajectory to the primary target is constrained to ensure reachability of the secondary target within M steps. A variable-horizon linear MPC formulation is developed to illustrate the concept. The formulation is then extended to provide robustness to bounded disturbances by use of tightened constraints. Simulations demonstrate the efficacy of the controller formulation on a double-integrator model. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the complexity of computing systems grows, reliability and energy are two crucial challenges asking for holistic solutions. In this paper, we investigate the interplay among concurrency, power dissipation, energy consumption and voltage-frequency scaling for a key numerical kernel for the solution of sparse linear systems. Concretely, we leverage a task-parallel implementation of the Conjugate Gradient method, equipped with an state-of-the-art pre-conditioner embedded in the ILUPACK software, and target a low-power multi core processor from ARM.In addition, we perform a theoretical analysis on the impact of a technique like Near Threshold Voltage Computing (NTVC) from the points of view of increased hardware concurrency and error rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The end of Dennard scaling has promoted low power consumption into a firstorder concern for computing systems. However, conventional power conservation schemes such as voltage and frequency scaling are reaching their limits when used in performance-constrained environments. New technologies are required to break the power wall while sustaining performance on future processors. Low-power embedded processors and near-threshold voltage computing (NTVC) have been proposed as viable solutions to tackle the power wall in future computing systems. Unfortunately, these technologies may also compromise per-core performance and, in the case of NTVC, xreliability. These limitations would make them unsuitable for HPC systems and datacenters. In order to demonstrate that emerging low-power processing technologies can effectively replace conventional technologies, this study relies on ARM’s big.LITTLE processors as both an actual and emulation platform, and state-of-the-art implementations of the CG solver. For NTVC in particular, the paper describes how efficient algorithm-based fault tolerance schemes preserve the power and energy benefits of very low voltage operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.