910 resultados para fault diagnosis,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors present a Cause-Effect fault diagnosis model, which utilises the Root Cause Analysis approach and takes into account the technical features of a digital substation. The Dempster/Shafer evidence theory is used to integrate different types of fault information in the diagnosis model so as to implement a hierarchical, systematic and comprehensive diagnosis based on the logic relationship between the parent and child nodes such as transformer/circuit-breaker/transmission-line, and between the root and child causes. A real fault scenario is investigated in the case study to demonstrate the developed approach in diagnosing malfunction of protective relays and/or circuit breakers, miss or false alarms, and other commonly encountered faults at a modern digital substation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional analytic models for power system fault diagnosis are usually formulated as an unconstrained 0–1 integer programming problem. The key issue of the models is to seek the fault hypothesis that minimizes the discrepancy between the actual and the expected states of the concerned protective relays and circuit breakers. The temporal information of alarm messages has not been well utilized in these methods, and as a result, the diagnosis results may be not unique and hence indefinite, especially when complicated and multiple faults occur. In order to solve this problem, this paper presents a novel analytic model employing the temporal information of alarm messages along with the concept of related path. The temporal relationship among the actions of protective relays and circuit breakers, and the different protection configurations in a modern power system can be reasonably represented by the developed model, and therefore, the diagnosed results will be more definite under different circumstances of faults. Finally, an actual power system fault was served to verify the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings is usually performed by means of vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. The aim is to monitor the integrity of the bearing components, in order to avoid catastrophic failures, or to implement condition based maintenance strategies. In particular, the trend in this field is to combine in a single algorithm different signal-enhancement and signal-analysis techniques. Among the first ones, Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to highlight the effect of a possible damage in one of the bearing components within the vibration signal. This paper presents the application of this technique to signals collected on a simple test-rig, able to test damaged industrial roller bearings in different working conditions. The effectiveness of the technique has been tested, comparing the results of one undamaged bearing with three bearings artificially damaged in different locations, namely on the inner race, outer race and rollers. Since MED performances are dependent on the filter length, the most suitable value of this parameter is defined on the basis of both the application and measured signals. This represents an original contribution of the paper.