925 resultados para far field pattern


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a far-field power pattern separation approach is proposed for the synthesis of directional modulation (DM) transmitter arrays. Separation into information patterns and interference patterns is enabled by far-field pattern null steering. Compared with other DM synthesis methods, for example, bit error rate-driven DM optimisation and orthogonal vector injection, the approach developed in this study facilitates manipulation of artificial interference spatial distributions. With such capability more interference power can be projected into those spatial directions most vulnerable to eavesdropping, that is, the information side lobes. In such a fashion, information leaked through radiation side lobes can be effectively mitigated in a transmitter power efficient manner. Furthermore, for the first time, the authors demonstrate how multi-beam DM transmitters can be synthesised via this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a far-field power pattern separation approach is proposed for the synthesis of directional modulation (DM) transmitter arrays. Separation into information pattern and interference patterns is enabled by far-field pattern null steering. Compared with other DM synthesis methods, e.g., BER-driven DM optimization and orthogonal vector injection, this approach facilitates manipulation of artificial interference spatial distributions. With such capability more interference power can be projected into those most vulnerable to eavesdropping spatial directions in free space, i.e., the information sidelobes. In such a fashion information leaked through radiation sidelobes can be effectively mitigated in a transmitter power efficient manner. The proposed synthesis approach is further validated via bit error rate (BER) simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem considered is that of determining the shape of a plane acoustically sound-soft obstacle from the knowledge of the far-field pattern for one time-harmonic incident field. An iterative procedure is proposed based on two boundary integrals representing the incident field and the far-field pattern, respectively. Numerical examples are included which show that the procedure gives accurate numerical approximations in relatively few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar near-field, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different methods to reduce the noise power in the far-field pattern of an antenna as measured in cylindrical near-field (CNF) are proposed. Both methods are based on the same principle: the data recorded in the CNF measurement, assumed to be corrupted by white Gaussian and space-stationary noise, are transformed into a new domain where it is possible to filter out a portion of noise. Those filtered data are then used to calculate a far-field pattern with less noise power than that one obtained from the measured data without applying any filtering. Statistical analyses are carried out to deduce the expressions of the signal-to-noise ratio improvement achieved with each method. Although the idea of the two alternatives is the same, there are important differences between them. The first one applies a modal filtering, requires an oversampling and improves the far-field pattern in all directions. The second method employs a spatial filtering on the antenna plane, does not require oversampling and the far-field pattern is only improved in the forward hemisphere. Several examples are presented using both simulated and measured near-field data to verify the effectiveness of the methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate, analytical series expressions for the far-field diffraction of it Gaussian beam normally incident on a circular and central obscured aperture are derived with the help of the integration of parts method. With this expression, the far-field intensity distribution pattern can be obtained and the divergence angle is deduced too. Using the first five items of the series, the accuracy can satisfy most laser application fields. Compared with the conventional numerical integral method, the series representation is very convenient for understanding the physical meanings. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a reflection suppression technique for far field antenna measurements. The technique is based on a source reconstruction over a surface greater than the antenna itself. To be able to perform the reflection construction the next steps are required: the complete far field antenna pattern is obtained through interpolation of the acquired cuts, the currents are obtained through a holographic technique, the field out of the antenna area is filtered, and the pattern is reconstructed. The algorithm is used with measurements in the LEHA-UPM antenna measurement facilities and in the outdoor far field facility of LIT INPE in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.