1000 resultados para fagus-sylvatica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>The aim of the work was to shed light into histological, physiological and molecular changes of Fagus sylvatica seedlings infected with the root pathogen Phytophthora citricola with the final goal to distinguish between local and systemic responses. Real-time quantitative PCR analysis proved that P. citricola was able to grow from infected roots into hypocotyl and epicotyl tissue of F. sylvatica seedlings. Light microscopy showed many collapsed parenchyma cells of the cortex without being penetrated by the pathogen. Hyphae were mainly growing intracellular in parenchyma and xylem tissue. Transmission electron microscopy displayed disintegration of xylem vessels and of parenchyma cells. Inhibition of water uptake of infected beech seedlings was positively correlated with the concentration of zoospores used in the experiment. In addition, a split root experiment indicated that invertases were possibly involved locally and systemically in the conversion of sucrose of P. citricola infected roots. During the growth of the pathogen in roots, a transient expression of the 1-aminocyclopropane-1-carboxylic acid (ACC)-oxidase gene was quantified in leaves which was detected in parallel with the first peak of a biphasic ethylene outburst. Additionally a systemic upregulation of aquaporin transcripts was mainly detected in leaves of beech seedlings infected with P. citricola.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification is a major problem when using histology to study the influence of ecological factors on tree structure. This paper presents a method to prepare and to analyse transverse sections of cambial zone and of conductive phloem in bark samples. The following paper (II) presents the automated measurement procedure. Part I here describes and discusses the preparation method, and the influence of tree age on the observed structure. Highly contrasted images of samples extracted at breast height during dormancy were analysed with an automatic image analyser. Between three young (38 years) and three old (147 years) trees, age-related differences were identified by size and shape parameters, at both cell and tissue levels. In the cambial zone, older trees had larger and more rectangular fusiform initials. In the phloem, sieve tubes were also larger, but their shape did not change and the area for sap conduction was similar in both categories. Nevertheless, alterations were limited, and demanded statistical analysis to be identified and ascertained. The physiological implications of the structural changes are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting the timing and amount of tree mortality after a forest fire is of paramount importance for post-fire management decisions, such as salvage logging or reforestation. Such knowledge is particularly needed in mountainous regions where forest stands often serve as protection against natural hazards (e.g., snow avalanches, rockfalls, landslides). In this paper, we focus on the drivers and timing of mortality in fire-injured beech trees (Fagus sylvatica L.) in mountain regions. We studied beech forests in the southwestern European Alps, which burned between 1970 and 2012. The results show that beech trees, which lack fire-resistance traits, experience increased mortality within the first two decades post-fire with a timing and amount strongly related to the burn severity. Beech mortality is fast and ubiquitous in high severity sites, whereas small- (DBH <12 cm) and intermediate-diameter (DBH 12–36 cm) trees face a higher risk to die in moderate-severity sites. Large-diameter trees mostly survive, representing a crucial ecological legacy for beech regeneration. Mortality remains low and at a level similar to unburnt beech forests for low burn severity sites. Beech trees diameter, the presence of fungal infestation and elevation are the most significant drivers of mortality. The risk of beech to die increases toward higher elevation and is higher for small-diameter than for large-diameter trees. In case of secondary fungi infestation beech faces generally a higher risk to die. Interestingly, fungi that initiate post-fire tree mortality differ from fungi occurring after mechanical injury. From a management point of view, the insights about the controls of post-fire mortality provided by this study should help in planning post-fire silvicultural measures in montane beech forests.