66 resultados para extractants
Resumo:
Despite its environmental (and financial) importance, there is no agreement in the literature as to which extractant most accurately estimates the phytoavailability of trace metals in soils. A large dataset was taken from the literature, and the effectiveness of various extractants to predict the phytoavailability of Cd, Zn, Ni, Cu, and Pb examined across a range of soil types and contamination levels. The data suggest that generally, the total soil trace metal content, and trace metal concentrations determined by complexing agents (such as the widely used DTPA and EDTA extractants) or acid extractants (such as 0.1 M HCl and the Mehlich 1 extractant) are only poorly correlated to plant phytoavailability. Whilst there is no consensus, it would appear that neutral salt extractants (such as 0.01 M CaCl2 and 0.1 M NaNO3) provide the most useful indication of metal phytoavailability across a range of metals of interest, although further research is required.
Resumo:
Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
Resumo:
In Brazil, plant-available micronutrients in the soil can be determined by several chemical extractants, the most common of which are dilute acid and chelating solutions. The purpose of this study was to assess the extractants 0.1 mol L-1 HCl, Mehlich-1, Mehlich-3 and DTPA for analysis of the micronutrients Cu, Zn, Fe, and Mn in soils from the state of Paraná. In samples from 12 soils (0-20 cm layer), wheat was planted (Triticum aestivum), grown for 42 days after emergence, and then bean (Phaseolus vulgaris) for 38 days. At the end of each planting period, the soil was sampled again. All extractants tested to assess the availability of Cu, Zn, Fe, and Mn correlated with each other. The efficiency of the extractants HCl, Mehlich-3 and DTPA in assessing plant-available Cu was similar, unlike Mehlich-1, which proved less efficient. The extractants HCl, Mehlich-1 and Mehlich-3 were less efficient in estimating plant-available Zn and Fe, and the most indicated extractant is DTPA. The efficiency of the extractants HCl, Mehlich-1, Mehlich-3 and DTPA in assessing plant-available Mn in soils from Paraná was similar.
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
The amphiphilic nature of metal extractants causes the formation of micelles and other microscopic aggregates when in contact with water and an organic diluent. These phenomena and their effects on metal extraction were studied using carboxylic acid (Versatic 10) and organophosphorus acid (Cyanex 272) based extractants. Special emphasis was laid on the study of phase behaviour in a pre neutralisation stage when the extractant is transformed to a sodium or ammonium salt form. The pre neutralised extractants were used to extract nickel and to separate cobalt and nickel. Phase diagrams corresponding to the pre neutralisation stage in a metal extraction process were determined. The maximal solubilisation of the components in the system water(NH3)/extractant/isooctane takes place when the molar ratio between the ammonia salt form and the free form of the extractant is 0.5 for the carboxylic acid and 1 for the organophosphorus acid extractant. These values correspond to the complex stoichiometry of NH4A•HA and NIi4A, respectively. When such a solution is contacted with water a microemulsion is formed. If the aqueous phase contains also metal ions (e.g. Ni²+), complexation will take place on the microscopic interface of the micellar aggregates. Experimental evidence showing that the initial stage of nickel extraction with pre neutralised Versatic 10 is a fast pseudohomogeneous reaction was obtained. About 90% of the metal were extracted in the first 15 s after the initial contact. For nickel extraction with pre neutralised Versatic 10 it was found that the highest metal loading and the lowest residual ammonia and water contents in the organic phase are achieved when the feeds are balanced so that the stoichiometry is 2NH4+(org) = Nit2+(aq). In the case of Co/Ni separation using pre neutralised Cyanex 272 the highest separation is achieved when the Co/extractant molar ratio in the feeds is 1 : 4 and at the same time the optimal degree of neutralisation of the Cyanex 272 is about 50%. The adsorption of the extractants on solid surfaces may cause accumulation of solid fine particles at the interface between the aqueous and organic phases in metal extraction processes. Copper extraction processes are known to suffer of this problem. Experiments were carried out using model silica and mica particles. It was found that high copper loading, aromacity of the diluent, modification agents and the presence of aqueous phase decrease the adsorption of the hydroxyoxime on silica surfaces.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Multiple parallel synthesis and evaluation have been combined in order to identify new nitrogen heterocycles for the partitioning of minor actinides(III) such as americium(III) from lanthanides such as europium(Ill). An array of triazine-containing molecules was made using multiple parallel syntheses from diketones and amide hydrazides. An excess of each of the resulting purified reagents was dissolved in 1,1,2,2-tetrachloroethane containing 2-bromodecanoic acid, and equilibrated with an aqueous solution containing the radiotracers Eu-152 and Am-241 in nitric acid ([Eu] + [Am] < 400 nanomol dm(-3)). Gamma counting of the organic and aqueous phases led to the identification of several new reagents for the selective extraction of americium(III). In particular, 6-(2-pyridyl)-2-(5,6-dialkyl-1,2,4-triazaphenyl)pyridines were found to be effective reagents for the separation of americium(III) from europium(III), (SFAm/Eu was ca. 30 in [HNO3] = 0.013 mol/L).
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
In Brazil, plant-available micronutrients in the soil can be determined by several chemical extractants, the most common of which are dilute acid and chelating solutions. The purpose of this study was to assess the extractants 0.1 mol L-1 HCl, Mehlich-1, Mehlich-3 and DTPA for analysis of the micronutrients Cu, Zn, Fe, and Mn in soils from the state of Parana. In samples from 12 soils (0-20 cm layer), wheat was planted (Triticum aestivum), grown for 42 days after emergence, and then bean (Phaseolus vulgaris) for 38 days. At the end of each planting period, the soil was sampled again. All extractants tested to assess the availability of Cu, Zn, Fe, and Mn correlated with each other. The efficiency of the extractants HCl, Mehlich-3 and DTPA in assessing plant-available Cu was similar, unlike Mehlich-1, which proved less efficient. The extractants HCl, Mehlich-1 and Mehlich-3 were less efficient in estimating plant-available Zn and Fe, and the most indicated extractant is DTPA. The efficiency of the extractants HCl, Mehlich-1, Mehlich-3 and DTPA in assessing plant-available Mn in soils from Parana was similar.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
Resumo:
"Date Declassified:October 27, 1955."
Resumo:
No-till (NT) system with crop rotation is one of the most effective strategies to improve agricultural sustainability in tropical and subtropical regions. To control soil acidity in NT, lime is broadcast on the surface without incorporation. The increase in soil pH due to surface liming may decrease zinc (Zn) availability and its uptake by crops. A field experiment was performed in Parana State, Brazil, on a loamy, kaolinitic, thermic Typic Hapludox to evaluate Zn bioavailability in a NT system after surface liming and re-liming. Dolomitic lime was surface applied on the main plots in July 1993 at the rates of 0, 2, 4, and 6 Mg ha-1. In June 2000, the main plots were divided in two subplots to study of the effect of surface re-liming at the rates of 0 and 3 Mg ha-1. The cropping sequence was soybean [Glycine max (L.) Merrill] (2001-2 and 2002-3), wheat (Triticum aestivum L.) (2003), soybean (2003-4), corn (Zea mays L.) (2004-5), and soybean (2005-6). Soil samples were collected at the following depths: 0-0.05, 0.05-0.10, and 0.10-0.20m, 10 years after surface liming and 3 years after surface re-liming. Soil Zn levels were extracted by four extractants: (i) 0.005molL-1 diethylenetriaminepentaacetic acid (DTPA) + 0.1molL-1 triethanolamine (TEA) + 0.01molL-1 calcium chloride (CaCl2) solution at pH7.3 (DTPA-TEA), (ii) 0.1molL-1 hydrochloric acid (HCl) solution, (iii) Mehlich 1 solution, and (iv) Mehlich 3 solution. Zinc concentrations in leaves and grains of soybean, wheat, and corn were also determined. Soil pH (0.01molL-1 CaCl2 suspension) varied from 4.4 to 6.1, at the 0- to 0.05-m depth, from 4.2 to 5.3 at the 0.05- to 0.10-m depth, and from 4.2 to 4.8 at the 0.10- to 0.20-m depth, after liming and re-liming. Zinc concentrations evaluated by DTPA-TEA, 0.1molL-1 HCl, Mehlich 1, and Mehlich 3 solutions were not changed as a result of lime rate application. Re-liming increased Zn concentrations extracted by 0.1molL-1 HCl at 0-0.05m deep and by DTPA-TEA at 0.05-0.10m deep. Surface-applied lime promoted a decrease in Zn concentrations of the crops, mainly in grains, because of increased soil pH at the surface layers. Regardless of the liming treatments, levels of Zn were sufficient to soybean, wheat, and corn nutrition under NT.
Resumo:
The magnesium (Mg) status of 52 highly weathered, predominantly acidic, surface soils from tropical and subtropical north-eastern Australia was evaluated in a laboratory study. Soils were selected to represent a range of soil types and management histories. Exchangeable Mg concentrations were generally low (median value 0.37 cmol(+)/kg), with deficient levels (<0.3 cmol(+)/kg) being measured in 22 of the soils, highlighting the potential for Mg deficiency as a limitation to plant growth in the region. Furthermore, acid-extractable Mg concentrations, considered a reserve of potentially available Mg, were generally modest (mean and median values, 1.6 and 0.40 cmol(+)/kg, respectively). The total Mg content of the soils studied ranged from 123 to 7894 mg/kg, the majority present in the mineral pool (mean 71%), with smaller proportions in the acid-soluble (mean 11%) and exchangeable (mean 17%) pools, and a negligible amount associated with organic matter (mean 1%). A range of extractant solutions used to displace exchangeable Mg was compared, and found to yield similar results on soils with exchangeable Mg <4 cmol(+)/kg. However, at higher exchangeable Mg concentrations, dilute extractants (0.01 M CaCl2, 0.0125 M BaCl2) displaced less Mg than concentrated extractants (1 M NH4Cl, 1 M NH4OAc, 1 M KCl). The concentrated extractants displaced similar amounts of Mg, thus the choice of extractant is not critical, provided the displacing cation is sufficiently concentrated. Exchangeable Mg was not significantly correlated to organic carbon (P > 0.05), and only 45% of the variation in exchangeable Mg could be explained by a combination of pH(w) and clay content.
Resumo:
Hoje em dia, a prevenção dos resíduos de metais é uma questão muito importante para um grande número de empresas, pois necessitam optimizar o seu sistema de tratamento de águas residuais a fim de alcançarem os limites legais dos teores em iões metálicos e poderem efectuar a descarga das águas residuais no domínio hídrico público. Devido a esta problemática foram efectuados estudos inovadores relacionados com a remoção de iões metálicos de águas residuais, verificando-se que as tecnologias de membrana oferecem uma série de vantagens para o efeito. Uma dessas tecnologias, referida como Membrana Líquida de Suporte (SLM), é baseada num mecanismo de extracção. A membrana hidrofóbica, impregnada com uma solução extractora, funciona como barreira entre a água residual e uma solução, geralmente ácida. A diferença de pH entre a água residual e a solução actua como força motriz para o transporte de iões metálicos da água residual para a referida solução. Poderá ocorrer um problema de falta de estabilidade, resultante da possível fuga da solução extractora para fora dos poros das membranas. Estudos anteriores mostraram que os ácidos alquilfosfóricos ou ácidos fosfónicos, como os reagentes D2EHPA e CYANEX e hidroxioximas como o LIX 860-I podem ser muito úteis para a extração de iões metálicos como ferro, cobre, níquel, zinco e outros. A clássica extracção líquido-líquido também tem mostrado que a mistura de diferentes extractores pode ter um efeito sinergético. No entanto, não é claro que haja um efeito óptimo da razão de extractor ou que tipo de complexo é formado durante o processo de extracção. O objectivo deste projecto é investigar este comportamento sinergético e as complexas formações por meio de um método espectrofotométrico, o “Job’s method” e “Mole-ratio method”. Estes métodos são utilizados para estimar a estequiometria dos vários complexos entre dois solutos, a partir da variação de absorvância dos complexos quando comparado com a absorvância do soluto. Com este projecto, o Job’s method e mole-ratio method serão aplicados a um sistema de três componentes, para conseguir mais informações sobre a complexação de níquel (II) e a fim de determinar a razão extractor: metal dos complexos formados durante a aplicação de mistura de extractores D2EHPA e LIX 860-I. Segundo Job’s method a elavada absorvância situa-se na região de 0,015-0,040 M de LIX 860-I e uma baixa concentração de D2EHPA. Quando as diferentes experiências são encontradas num conjunto experimental foram avaliadas de acordo com o método de trabalho, o valor máximo do gráfico foi encontrado para uma baixa fração molar do ião metálico e uma maior concentração de D2EHPA. Esta mudança foi encontrado de 0,50 até 0,30, que poderia apontar para a direção da formação de diferentes complexos. Para o Mole-Ratio method, a estequiometria dos complexos metal pode ser determinada a partir do ponto de intersecção das linhas tangente do gráfico da absorbância versus a concentração do ligante. Em todos os casos, o máximo foi obtido em torno de uma concentração total de 0,010 M. Quando D2EHPA foi aplicado sozinho, absorvâncias muito baixos foram obtidas.