949 resultados para extração por ponto nuvem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Produced water is a major problem associated with the crude oil extraction activity. The monitoring of the levels of metals in the waste is constant and requires the use of sensitive analytical techniques. However, the determination of trace elements can often require a pre-concentration step. The objective of this study was to develop a simple and rapid analytical method for the extraction and pre-concentration based on extraction phenomenon cloud point for the determination of Cd, Pb and Tl in produced water samples by spectrometry of high resolution Absorption source continues and atomization graphite furnace. The Box Behnken design was used to obtain the optimal condition of extraction of analytes. The factors were evaluated: concentration of complexing agent (o,o-dietilditilfosfato ammonium, DDTP), the concentration of hydrochloric acid and concentration of surfactant (Triton X -114). The optimal condition obtained through extraction was: 0,6% m v-1 DDTP, HCl 0,3 mol L-1 and 0,2% m v-1 of Triton X - 114 for Pb; 0,7% m v-1 DDTP, HCl 0,8 mol L-1 and 0,2% m v-1 Triton X-114 for Cd. For Tl was evidenced that best extraction condition occurs with no DDTP, the extraction conditions were HCl 1,0 mol L-1 e 1,0% m v-1 de Triton X - 114. The limits of detection for the proposed method were 0,005 µg L-1 , 0,03 µg L-1 and 0,09 µg L-1 to Cd, Pb and Tl, Respectively. Enrichment factors Were greater than 10 times. The method was applied to the water produced in the Potiguar basin, and addition and recovery tests were performed, and values were between 81% and 120%. The precision was expressed with relative standard deviation (RSD) is less than 5%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of effluent from the finishing process in textile industry is a serious environmental problem and turned into an object of study in several scientific papers. Contamination with dyes and the presences of substances that are toxic to the environment characterize this difficult treatment effluent. Several processes have already been evaluated to remove and even degrade such pollutants are examples: coagulation-flocculation, biological treatment and advanced oxidative processes, but not yet sufficient to enable the recovery of dye or at least of the recovery agent. An alternative to this problem is the cloud point extraction that involves the application of nonionic surfactants at temperatures above the cloud point, making the water a weak solvent to the surfactant, providing the agglomeration of those molecules around the dyes molecules by affinity with the organic phase. After that, the formation of two phases occurred: the diluted one, poor in dye and surfactant, and the other one, coacervate, with higher concentrations of dye and surfactants than the other one. The later use of the coacervate as a dye and surfactant recycle shows the technical and economic viability of this process. In this paper, the cloud point extraction is used to remove the dye Reactive Blue from the water, using nonionic surfactant nonyl phenol with 9,5 etoxilations. The aim is to solubilize the dye molecules in surfactant, varying the concentration and temperature to study its effects. Evaluating the dye concentration in dilute phase after extraction, it is possible to analyze thermodynamic variables, build Langmuir isotherms, determine the behavior of the coacervate volume for a surfactant concentration and temperature, the distribution coefficient and the dye removal efficiency. The concentration of surfactant proved itself to be crucial to the success of the treatment. The results of removal efficiency reached values of 91,38%, 90,69%, 89,58%, 87,22% and 84,18% to temperatures of 65,0, 67,5, 70,0, 72,5 and 75,0°C, respectively, showing that the cloud point extraction is an efficient alternative for the treatment of wastewater containing Reactive Blue

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental sustainability has become one of the topics of greatest interest in industry, mainly due to effluent generation. Phenols are found in many industries effluents, these industries might be refineries, coal processing, pharmaceutical, plastics, paints and paper and pulp industries. Because phenolic compounds are toxic to humans and aquatic organisms, Federal Resolution CONAMA No. 430 of 13.05.2011 limits the maximum content of phenols, in 0.5 mg.L-1, for release in freshwater bodies. In the effluents treatment, the liquid-liquid extraction process is the most economical for the phenol recovery, because consumes little energy, but in most cases implements an organic solvent, and the use of it can cause some environmental problems due to the high toxicity of this compound. Because of this, exists a need for new methodologies, which aims to replace these solvents for biodegradable ones. Some literature studies demonstrate the feasibility of phenolic compounds removing from aqueous effluents, by biodegradable solvents. In this extraction kind called "Cloud Point Extraction" is used a nonionic surfactant as extracting agent of phenolic compounds. In order to optimize the phenol extraction process, this paper studies the mathematical modeling and optimization of extraction parameters and investigates the effect of the independent variables in the process. A 32 full factorial design has been done with operating temperature and surfactant concentration as independent variables and, parameters extraction: Volumetric fraction of coacervate phase, surfactant and residual concentration of phenol in dilute phase after separation phase and phenol extraction efficiency, as dependent variables. To achieve the objectives presented before, the work was carried out in five steps: (i) selection of some literature data, (ii) use of Box-Behnken model to find out mathematical models that describes the process of phenol extraction, (iii) Data analysis were performed using STATISTICA 7.0 and the analysis of variance was used to assess the model significance and prediction (iv) models optimization using the response surface method (v) Mathematical models validation using additional measures, from samples different from the ones used to construct the model. The results showed that the mathematical models found are able to calculate the effect of the surfactant concentration and the operating temperature in each extraction parameter studied, respecting the boundaries used. The models optimization allowed the achievement of consistent and applicable results in a simple and quick way leading to high efficiency in process operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O uso de pesticidas levou ao aumento da produtividade e qualidade dos produtos agrícolas, porém o seu uso acarreta na intoxicação dos seres vivos pela ingestão gradativa de seus resíduos que contaminam o solo, a água e os alimentos. Dessa forma, há a necessidade do monitoramento constante de suas concentrações nos compartimentos ambientais. Para isto, busca-se o desenvolvimento de métodos de extração e enriquecimento de forma rápida, com baixo custo, gerando um baixo volume de resíduos, contribuindo com a química verde. Dentre estes métodos destacam-se a extração por banho de ultrassom e a extração por ponto nuvem. Após o procedimento de extração, o extrato obtido pode ser analisado por técnicas de Cromatografia a Líquido de Alta Eficiência (HPLC) e a Cromatografia por Injeção Sequencial (SIC), empregando fases estacionárias modernas, tais como as monolíticas e as partículas superficialmente porosas. O emprego de SIC com coluna monolítica (C18, 50 x 4,6 mm) e empacotada com partículas superficialmente porosas (C18, 30 x 4,6 mm, tamanho de partícula 2,7 µm) foi estudado para separação de simazina (SIM) e atrazina (ATR), e seus metabólitos, desetilatrazina (DEA), desisopropilatrazina (DIA) e hidroxiatrazina (HAT). A separação foi obtida por eluição passo-a-passo, com fases móveis compostas de acetonitrila (ACN) e tampão Acetato de Amônio/Ácido acético (NH4Ac/HAc) 2,5 mM pH 4,2. A separação na coluna monolítica foi realizada com duas fases móveis: MP1= 15:85 (v v-1) ACN:NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc a uma vazão de 35 µL s-1. A separação na coluna com partículas superficialmente porosas foi efetivada com as fases móveis MP1= 13:87 (v v-1) ACN: NH4Ac/HAc e MP2= 35:65 (v v-1) ACN:NH4Ac/HAc à vazão de 8 µL s-1. A extração por banho de ultrassom em solo fortificado com os herbicidas (100 e 1000 µg kg-1) resultou em recuperações entre 42 e 160%. A separação de DEA, DIA, HAT, SIM e ATR empregando HPLC foi obtida por um gradiente linear de 13 a 35% para a coluna monolítica e de 10 a 35% ACN na coluna com partículas superficialmente porosas, sendo a fase aquosa constituída por tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 15 min. A extração por banho de ultrassom das amostras de solo com presença de ATR, fortificadas com concentrações de 250 a 1000 µg kg-1, proporcionou recuperações entre 40 e 86%. A presença de ATR foi confirmada por espectrometria de massas. Foram realizados estudos de fortificação com ATR e SIM em amostras de água empregando a extração por ponto nuvem com o surfactante Triton-X114. A separação empregando HPLC foi obtida por um gradiente linear de 13 a 90% de ACN para a coluna monolítica e de 10 a 90% de ACN para a coluna empacotada, sempre em tampão NH4Ac/HAc 2,5 mM pH 4,2. Em ambas as colunas a vazão foi de 1,5 mL min-1 e o tempo de análise 16 min. Fortificações entre 1 e 50 µg L-1 resultaram em recuperações entre 65 e 132%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A água de coco é considerada uma bebida isotônica, nutritiva e pouco calórica. A sua composição química é bastante complexa, alguns dos principais constituintes são açúcares e minerais e, em menores quantidades, Iipídeos e compostos nitrogenados. Um grande desafio é preservar a água de coco por longo período de tempo fora do fruto, mantendo as suas características físicas e organolépticas. A pasteurização é um dos processos de conservação que vem sendo utilizado com esse propósito. No entanto, pouco se sabe a respeito da influência desse processo de conservação na composição química da água de coco. Nesse sentido, a proposta desse trabalho foi investigar as espécies químicas de Cu e Zn presentes na água de coco, bem como avaliar a influência do processo de pasteurização sobre essas espécies. Para esse estudo foram feitas medidas de pH e da concentração hidrogeniônica, extração em ponto nuvem, extração por solvente, ultrafiltrações e determinação da concentração total de proteínas visando a separação com eletroforese em gel de poliacrilamida com dodecil sulfato de sódio (SOS-PAGE), e cromatografia por filtração em gel. As determinações de Cu e Zn foram feitas na água de coco total e nas frações por espectrometria de absorção atômica com atomização eletrotérmica (ETAAS). Os resultados das determinações totais de Cu e Zn, e de proteínas mostraram que a composição dessas espécies varia muito entre os diferentes frutos. A combinação dos resultados obtidos pelas diferentes técnicas indicou que o Cu está, preferencialmente, associado às moléculas de maiores pesos moleculares, enquanto que o Zn encontra-se associado a pequenas moléculas. A pasteurização não afetou o pH, a concentração total dos elementos e de proteínas. Porém, a partir dos resultados da cromatografia por filtração em gel e da determinação de Cu e Zn nas frações coletadas do eluente, foi possível observar que a pasteurização provocou alterações nos pesos moleculares das proteínas e, possivelmente nos elementos associados a elas. As mudanças observadas indicam quebra de ligações fracas, provavelmente dissulfeto, rompendo aglomerados protéicos (maior massa molecular) e aumentando a abundância de proteínas mais leves (menor massa molecular).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho é feito um estudo do processo de dispersão e combustão de uma mistura gasosa, assim como uma avaliação de alguns dos vários métodos disponíveis para estimar os resultados de uma explosão de nuvem de gás inflamável-ar. O método Multienergia foi utilizado para estimar os campos de sobrepressão resultantes de explosões de nuvens de GLP em áreas congestionadas pela presença de árvores, próximas a esferas de armazenamento de gás. Foram considerados como áreas congestionadas propícias para geração de turbulência os hortos florestais como os comumente encontrados em torno de indústrias petroquímicas e refinarias de petróleo. Foram feitas simulações para áreas de horto florestal de formato quadrado variando entre 50.000 m2 e 250.000 m2 e altura de 10 m. Para avaliar o efeito da explosão sobre a esfera, o critério de risco se baseou num elongamento máximo de 0,2% dos tirantes críticos de sustentação da mesma. Foram avaliados os efeitos destas explosões sobre uma esfera de GLP de diâmetro externo de 14,5 m para distâncias de 10 a 100 m entre a esfera e a borda do horto. É mostrado que áreas congestionadas com no mínimo 100.000 m2 podem representar um risco para a integridade das esferas menos preenchidas com GLP. Do ponto de vista da segurança das unidades de armazenamento, foi visto com base nos resultados obtidos que é preferível manter um menor número de esferas com maior preenchimento do que dividir o volume de GLP disponível entre várias unidades. Foi estimado que para áreas com grau de congestionamento de 25% a distância mínima segura entre a borda do horto e a esfera varia entre 10 m, para hortos com área de 100.000 m2, e 87,6 m, para hortos de 250.000 m2 A influência do espaçamento das árvores, representada pelo grau de obstrução da área de passagem da frente de chama, também foi analisada, indicando o quanto sua alteração pode afetar a distância mínima segura para as esferas. Por fim são feitas recomendações quanto à distância mínima entre o parque de esferas e o horto, bem como outras formas de diminuir o risco representado por explosões oriundas da formação acidental de mistura inflamável no interior dos mesmos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A síntese de redes de trocadores de calor foi muito bem estudada pela comunidade científica nos últimos trinta anos, porém, o desenvolvimento de métodos e a melhoria dos já existentes sempre foram o foco principal da grande maioria dos autores. São poucos os trabalhos que aplicam qualquer uma das metodologias a situações reais e discorrem sobre as dificuldades encontradas - provavelmente porque as empresas não têm interesse em tornar público os resultados obtidos. Este trabalho aplica a metodologia do ponto de estrangulamento na nova fábrica de farelo branco do Parque Industrial de Esteio e, portanto, pode servir como um guia prático aos profissionais que desejem fazer o mesmo em outras plantas industriais. Esta dissertação sintetiza duas redes de trocadores de calor para a fábrica de farelo branco de Esteio, levando em consideração as condições econômicas e os custos de equipamento e de montagem no Brasil. A primeira rede estabelecida é baseada em aproveitamentos térmicos utilizados pelos fabricantes e pelas empresas que dominam a tecnologia de extração de óleos vegetais, já a segunda rede sintetizada utiliza a metodologia do ponto de estrangulamento. Os dois resultados obtidos são bastante viáveis economicamente, sendo que a rede sintetizada pelo ponto de estrangulamento é mais econômica. O Valor Presente Líquido é utilizado como critério de cálculo de viabilidade das duas redes. Foi demonstrado que para a realidade brasileira este critério é mais adequado que o Custo Total Anualizado. A flexibilidade da rede produzida pelo método do ponto de estrangulamento foi avaliada de maneira preliminar por simulação e tabelas de sensibilidade. O resultado obtido é robusto na posta em marcha e quando a planta é submetida a variações no extrator - situações que produzem distúrbios importantes e freqüentes. A aplicação da metodologia do ponto de estrangulamento na integração energética da fábrica de farelo branco confirmou a simplicidade do método e a sua forte interação com o engenheiro de processos. O Rio Grande do Sul tem muito a ganhar se esta metodologia for disseminada nas universidades e nas empresas que compõe o parque industrial do estado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of aerodynamic loading variations has many engineering applications, including helicopter rotor blades, wind turbines and turbo machinery. This work uses a Vortex Method to make a lagrangian description of the a twodimensional airfoil/ incident wake vortex interaction. The flow is incompressible, newtonian, homogeneus and the Reynolds Number is 5x105 .The airfoil is a NACA 0018 placed a angle of attack of the 0° and 5°simulates with the Painel Method with a constant density vorticity panels and a generation poit is near the painel. The protector layer is created does not permit vortex inside the body. The vortex Lamb convection is realized with the Euler Method (first order) and Adans-Bashforth (second order). The Random Walk Method is used to simulate the diffusion. The circular wake has 366 vortex all over positive or negative vorticity located at different heights with respect to the airfoil chord. The Lift was calculated based in the algorithm created by Ricci (2002). This simulation uses a ready algorithm vatidated with single body does not have a incident wake. The results are compared with a experimental work The comparasion concludes that the experimental results has a good agrement with this papper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonionic surfactants are composed of substances whose molecules in solution, does not ionize. The solubility of these surfactants in water due to the presence of functional groups that have strong affinity for water. When these surfactants are heated is the formation of two liquid phases, evidenced by the phenomenon of turbidity. This study was aimed to determine the experimental temperature and turbidity nonilfenolpoliethoxyled subsequently perform a thermodynamic modeling, considering the models of Flory-Huggins and the empirical solid-liquid equilibrium (SLE). The method used for determining the turbidity point was the visual method (Inoue et al., 2008). The experimental methodology consisted of preparing synthetic solutions of 0,25%, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12,5%, 15%, 17% and 20% by weight of surfactant. The nonionic surfactants used according to their degree of ethoxylation (9.5, 10, 11, 12 and 13). During the experiments the solutions were homogenized and the bath temperature was gradually increased while the turbidity of the solution temperature was checked visually Inoue et al. (2003). These temperature data of turbidity were used to feed the models evaluated and obtain thermodynamic parameters for systems of surfactants nonilfenolpoliethoxyled. Then the models can be used in phase separation processes, facilitating the extraction of organic solvents, therefore serve as quantitative and qualitative parameters. It was observed that the solidliquid equilibrium model (ESL) was best represented the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant search for biodegradable materials for applications in several fields shows that carnauba wax can be a viable alternative in the manufacturing of biolubricants. Carnauba wax is the unique among the natural waxes to have a combination of properties of great importance. In previous studies it was verified the presence of metals in wax composition that can harm the oxidative stability of lubricants. Considering these factors, it was decided to develop a research to evaluate iron removal from carnauba wax, using microemulsion systems (Me) and perform the optimization of parameters, such as: extraction pH, temperature, extraction time, among others. Iron concentration was determined by atomic absorption and, to perform this analysis, sample digestion in microwave oven was used, showing that this process was very efficient. It was performed some analysis in order to characterize the wax sample, such as: attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetry (TG), differential scanning calorimetry (DSC), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM) and melting point (FP). The microemulsion systems were composed by: coconut oil as surfactant, n-butanol as cosurfactant, kerosene and/or heptanes as oil phase, distilled water as water phase. The pH chosen for this study was 4.5 and the metal extraction was performed in finite experiments. To evaluate Me extraction it was performed a factorial design for systems with heptane and kerosene as oil phase, also investigating the influence of temperature time and wax/Me ratio, that showed an statistically significant answer for iron extraction at 95% confidence level. The best result was obtained at 60°C, 10 hours contact time and 1: 10 wax/Me ratio, in both systems with kerosene and heptanes as oil phase. The best extraction occurred with kerosene as oil phase, with 54% iron removal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growth and development of modern society, arises the need to search for new raw materials and new technologies which present the "clean" characteristic, and do not harm the environment, but can join the energy needs of industry and transportation. The Moringa oleifera Lam, plant originating from India, and currently present in the Brazilian Northeast, presents itself as a multi-purpose plant, can be used as a coagulant in water treatment, as a natural remedy and as a feedstock for biodiesel production. In this work, Moringa has been used as a raw material for studies on the extraction and subsequently in the synthesis of biodiesel. Studies have been conducted on various techniques of Moringa oil extraction (solvents, mechanical pressing and enzymatic), being specially developed an experimental design for the aqueous extraction with the aid of the enzyme Neutrase© 0.8 L, with the aim of analyzing the influence variable pH (5.5-7.5), temperature (45-55°C), time (16-24 hours) and amount of catalyst (2-5%) on the extraction yield. In relation to study of the synthesis of biodiesel was initially carried out a conventional transesterification (50°C, KOH as a catalyst, methanol and 60 minutes reaction). Next, a study was conducted using the technique of in situ transesterification by using an experimental design variables as temperature (30-60°C), catalyst amount (2-5%), and molar ratio oil / ethanol (1:420-1:600). The extraction technique that achieved the highest extraction yield (35%) was the one that used hexane as a solvent. The extraction using 32% ethanol obtained by mechanical pressing and extraction reached 25% yield. For the enzymatic extraction, the experimental design indicated that the extraction yield was most affected by the effect of the combination of temperature and time. The maximum yield obtained in this extraction was 16%. After the step of obtaining the oil was accomplished the synthesis of biodiesel by the conventional method and the in situ technique. The method of conventional transesterification was obtained a content of 100% and esters by in situ technique was also obtained in 100% in the experimental point 7, with a molar ratio oil / alcohol 1:420, Temperature 60°C in 5% weight KOH with the reaction time of 1.5 h. By the experimental design, it was found that the variable that most influenced the ester content was late the percentage of catalyst. By physico-chemical analysis it was observed that the biodiesel produced by the in situ method fell within the rules of the ANP, therefore this technique feasible, because does not require the preliminary stage of oil extraction and achieves high levels of esters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies show the great influence of free radicals and other oxidants as responsible for aging and degenerative diseases. On the other hand, the natural phenolic compounds has shown great as antioxidants to inhibit lipid peroxidation and lipoxygenase in vitro. Among these, is highlighted trans-resveratrol ( 3,5,4 `- trihydroxystilbene ) phenolic compound , characterized as a polyphenol stilbene class. The vegetables popularly known as "Azedinha" (Rumex Acetosa) has trans-resveratrol in its composition and from this, the present work aimed to study on the supercritical extraction and conventional extraction (Soxhlet and sequential) in roots of Rumex Acetosa, evaluating the efficiency of extractive processes, antioxidant activity, total phenolic content and quantification of trans-resveratrol contained in the extracts. Extractions using supercritical CO2 as solvent, addition of co-solvent (ethanol) and were conducted by the dynamic method in a fixed bed extractor. The trial met a 23 factorial design with three replications at the central point, with the variable reply process yield and concentration of trans-resveratrol and pressure as independent variables, temperature and concentration of co-solvent (% v/v). Yields ( mass of dry extract / mass of raw material used ) obtained from the supercritical extraction ranged from 0,8 to 7,63 % , and the best result was obtained at 250 bar and 90 °C using the co-solvent 15% ethanol (% v/v). The value was calculated for YCER a flow rate of 1,0 ± 0,17 g/min resulting in 0,0469 CO2 ( g solute / g solvent ). The results of the mass yield varied between conventional extractions 0,78 % ( hexane) and 9,97 % (ethanol). The statistical model generated from the data of the concentration of trans-resveratrol performed as meaningful and predictive for a 95% confidence. GC analysis on HPLC (High Performance Liquid Chromatography), transresveratrol was quantified in all extracts and concentration values ranged between 0,0033 and 0,42 ( mg / g extract) for supercritical extracts and between 0,449 and 17,046 (mg / g extract) to conventional extractions and therefore, the Soxhlet extraction with ethanol for more selective trans-resveratrol than the supercritical fluid. Evaluation of antioxidant (radical method to sequester 2,2- diphenyl-1- picryl - hydrazyl - DPPH) the supercritical extracts resulted in EC50 values (concentration effective to neutralize 50% of free radicals) of between 7,89 and 18,43 mg/mL , while resulting in a Soxhlet extraction with EC50 values in the range of 6,05 and 7,39 mg/mL. As for quantification of the phenolic compounds (Method Spectrophotometer Folin-Ciocalteau) the supercritical extracts resulted in values between 85,3 and 194,79 mg GAE / g extract, whereas values derived from the Soxhlet extract resulted in values between 178,5 and 237,8 mg GAE / g extract. The high antioxidant activity can not be attributed solely to the presence of phenolic compounds, but the presence of other antioxidants in the existing Rumex acetosa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils