998 resultados para exponential stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on is less restrictive than earlier criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on $$\left( {{{\frac{{dk}}{{dt}}} \mathord{\left/ {\vphantom {{\frac{{dk}}{{dt}}} k}} \right. \kern-\nulldelimiterspace} k}} \right)$$ is less restrictive than earlier criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sufficient conditions for the exponential stability of a class ofnonlinear, non-autonomous stochastic differential equations in infinitedimensions are studied. The analysis consists of introducing a suitableapproximating solution systems and using a limiting argument to pass onstability of strong solutions to mild ones. As a consequence, the classicalcriteriaof stability in A. Ichikawa [8] are improved and extended to cover a class ofnon-autonomous stochastic evolution equations.Two examples are investigated to illustrate our theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
In this article, an exponential stability analysis of Markovian jumping stochastic bidirectional associative memory (BAM) neural networks with mode-dependent probabilistic time-varying delays and impulsive control is investigated. By establishment of a stochastic variable with Bernoulli distribution, the information of probabilistic time-varying delay is considered and transformed into one with deterministic time-varying delay and stochastic parameters. By fully taking the inherent characteristic of such kind of stochastic BAM neural networks into account, a novel Lyapunov-Krasovskii functional is constructed with as many as possible positive definite matrices which depends on the system mode and a triple-integral term is introduced for deriving the delay-dependent stability conditions. Furthermore, mode-dependent mean square exponential stability criteria are derived by constructing a new Lyapunov-Krasovskii functional with modes in the integral terms and using some stochastic analysis techniques. The criteria are formulated in terms of a set of linear matrix inequalities, which can be checked efficiently by use of some standard numerical packages. Finally, numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of functional differential equations subject to perturbations, which vary in time, and we study the exponential stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational exponential stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be exponentially stable. Then, we apply the results to get corresponding ones for impulsive functional differential equations. We also present an example of a delay differential equation with Perron integrable right-hand side where we apply our result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the energy decay for a class of plate equations with memory and lower order perturbation of p-Laplacian type, utt+?2u-?pu+?0tg(t-s)?u(s)ds-?ut+f(u)=0inOXR+, with simply supported boundary condition, where O is a bounded domain of RN, g?>?0 is a memory kernel that decays exponentially and f(u) is a nonlinear perturbation. This kind of problem without the memory term models elastoplastic flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a novel approach, we get explicit criteria for exponential stability of linear neutral time-varying differential systems. A brief discussion to the obtained results is given. To the best of our knowledge, the results of this paper are new.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, new weighted integral inequalities (WIIs) are first derived based on Jensen's integral inequalities in single and double forms. It is theoretically shown that the newly derived inequalities in this paper encompass both the Jensen inequality and its most recent improvement based on Wirtinger's integral inequality. The potential capability of WIIs is demonstrated through applications to exponential stability analysis of some classes of time-delay systems in the framework of linear matrix inequalities (LMIs). The effectiveness and least conservativeness of the derived stability conditions using WIIs are shown by various numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the problem of global exponential stability analysis of a class of non-autonomous neural networks with heterogeneous delays and time-varying impulses is considered. Based on the comparison principle, explicit conditions are derived in terms of testable matrix inequalities ensuring that the system is globally exponentially stableunder destabilizing impulsive effects. Numerical examples are given to demonstrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, by using a novel approach, we first prove a new generalization of discrete-type Halanay inequality. Based on our new generalized inequality, a novel criterion for the exponential stability of a certain class of nonlinear non-autonomous difference equations is proposed. Numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of exponential stability analysis of two-dimensional (2D) linearcontinuous-time systems with directional time-varying delays. An abstract Lyapunov-like theorem whichensures that a 2D linear system with delays is exponentially stable for a prescribed decay rate is exploitedfor the first time. In light of the abstract theorem, and by utilizing new 2D weighted integral inequalitiesproposed in this paper, new delay-dependent exponential stability conditions are derived in terms oftractable matrix inequalities which can be solved by various computational tools to obtain maximumallowable bound of delays and exponential decay rate. Two numerical examples are given to illustrate theeffectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new result on the existence, uniqueness and global exponential stability of a positive equilibrium of positiveneural networks in the presence of bounded time-varying delay. Based on some novel comparison techniques, a testable conditionis derived to ensure that all the state trajectories of the system converge exponentially to a unique positive equilibrium. Theeffectiveness of the obtained results is illustrated by a numerical example.