971 resultados para experimental animal
Resumo:
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.
Resumo:
Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29 +/- 0.27 x 1.1 +/- 0.26-basal; p=0.005) and MCV decreased (9.1 +/- 2.8 x 11.02 +/- 2.6-basal; p=0.006) from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4 +/- 6.9% x 85.3 +/- 6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.
Resumo:
Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards.
Resumo:
The aim of this study was to develop an ex vivo experimental animal model for percutaneous vertebroplasty, for further application in vivo to test novel bone injectable cements.
Resumo:
The treatment of animals used in research or in education tests requires proper care, scientific judgment and qualified professionals to understand the needs of the animals and the special requirements of the research, tests, and educational programs. The established guidelines aim the development of knowledge necessary for the improvement of health and wellbeing of humans as well as animals to get precise and accurate results. The techniques should not be performed with inappropriate procedures that cause pain or suffering. Some principles should be considered to have an appropriate animal care and treatment.
Resumo:
The beneficial effects derived from the nutritional support in human patients and experimental animal models include the improvement of immune function, repair of wounds, answer to the treatment, time of recovery and survival. In front of these benefits, we end up alienating the nutritional needs of hospitalized patients, especially those with clinical or surgical affections threatening. The objective of the nutritional support is to indicate the importancea and the proportions of energy and nutrients that the patient can use with the maximum effectiveness. The majority of hospitalized patients do not have voluntary food intake adequate to meet even the minimal nutritional needs. It is often perceived that lack of adequate food intake, will have serious impact on the patient’s clinical outcome. The nutritional assessment will help determine which route of feeding will be the safest, most effective and best tolerated by the patient. Diet choice is based on which of the patient’s problems can and should be addressed with nutrition and the feeding access available
Resumo:
Aims: The objective of this study is to create an experimental model of intestinal endometriosis in pigs, which might allow better understanding of deep infiltrating endometriosis and development of new treatment techniques. As secondary objective, we intend to create endometrial implants accessible by transrectal ultrasonography (TRUS). Study Design: Surgical experimental study in swine. Place and Duration of Study: This study was performed at the Instituto de Ensino e Pesquisa do Hospital Sírio-Libanês, São Paulo, Brazil, between January 2012 and December 2012. Methodology: Two sexually mature female minipigBR pigs underwent two laparotomies (each animal). The first laparotomy was performed to implant two fragments of autologous endometrium in the rectal wall. The second one was performed thirty days later to visualize, measure and obtain tissue of the site of the implants for histopathology study. A TRUS study was performed prior to the second surgery. The Institution’s Animal Utilization Study Committee approved the study. Results: In the first laparotomy a 5-cm segment of right uterine horn was resected. The endometrium was separated from the myometrium through sub-endometrial saline injection. Two endometrial fragments (1.0 x 2.0 cm) were dissected and sutured in the intra peritoneal anterior rectal wall of the animals. Thirty days later, all implants were identified during preoperative TRUS. “En-bloc” resection of the intestinal segment with the implants was performed during the second surgery. The autologous implants of endometrium invaded the muscular layer in one of the two animals. Conclusion: We demonstrated that the creation of an animal model of deep infiltrating endometriosis with intestinal involvement is feasible through a simple surgical technique. We believe that this model can be applied in experimental and clinical studies but further studies are necessary to refine the technique.
Resumo:
Abstract PURPOSE: Reliable animal models are essential to evaluate future therapeutic options like cell-based therapies for external anal sphincter insufficiency. The goal of our study was to describe the most reliable model for external sphincter muscle insufficiency by comparing three different methods to create sphincter muscle damage. METHODS: In an experimental animal study, female Lewis rats (200-250 g) were randomly assigned to three treatment groups (n = 5, each group). The external sphincter muscle was weakened in the left dorsal quadrant by microsurgical excision, cryosurgery, or electrocoagulation by diathermy. Functional evaluation included in vivo measurements of resting pressure, spontaneous muscle contraction, and contraction in response to electrical stimulation of the afferent nerve at baseline and at 2, 4, and 6 weeks after sphincter injury. Masson's trichrome staining and immunofluorescence for skeletal muscle markers was performed for morphological analysis. RESULTS: Peak contraction after electrical stimulation was significantly decreased after sphincter injury in all groups. Contraction forces recovered partially after cryosurgery and electrocoagulation but not after microsurgical excision. Morphological analysis revealed an incomplete destruction of the external sphincter muscle in the cryosurgery and electrocoagulation groups compared to the microsurgery group. CONCLUSIONS: For the first time, three different models of external sphincter muscle insufficiency were directly compared. The animal model using microsurgical sphincter destruction offers the highest level of consistency regarding tissue damage and sphincter insufficiency, and therefore represents the most reliable model to evaluate future therapeutic options. In addition, this study represents a novel model to specifically test the external sphincter muscle function.
Resumo:
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.
Resumo:
Background Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. Objectives To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. Methods A systematic review was conducted using the Medline and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. Results In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Conclusion Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships.