919 resultados para experience sampling method
Resumo:
The experiential sampling method (ESM) was used to collect data from 74 parttimestudents who described and assessed the risks involved in their current activitieswhen interrupted at random moments by text messages. The major categories ofperceived risk were short-term in nature and involved loss of time or materials relatedto work and physical damage (e.g., from transportation). Using techniques of multilevelanalysis, we demonstrate effects of gender, emotional state, and types of risk onassessments of risk. Specifically, females do not differ from males in assessing thepotential severity of risks but they see these as more likely to occur. Also, participantsassessed risks to be lower when in more positive self-reported emotional states. Wefurther demonstrate the potential of ESM by showing that risk assessments associatedwith current actions exceed those made retrospectively. We conclude by notingadvantages and disadvantages of ESM for collecting data about risk perceptions.
Resumo:
Theories on the link between achievement goals and achievement emotions focus on their within-person functional relationship (i.e., intraindividual relations). However, empirical studies have failed to analyze these intraindividual relations and have instead examined between-person covariation of the two constructs (i.e., interindividual relations). Aiming to better connect theory and empirical research, the present study (N = 120 10th grade students) analyzed intraindividual relations by assessing students’ state goals and emotions using experience sampling (N = 1,409 assessments within persons). In order to replicate previous findings on interindividual relations, students’ trait goals and emotions were assessed using self-report questionnaires. Despite being statistically independent, both types of relations were consistent with theoretical expectations, as shown by multi-level modeling: Mastery goals were positive predictors of enjoyment and negative predictors of boredom and anger; performance-approach goals were positive predictors of pride; and performance-avoidance goals were positive predictors of anxiety and shame. Reasons for the convergence of intra- and interindividual findings, directions for future research, and implications for educational practice are discussed.
Resumo:
Abstract Background Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. Methods We measured NO2 using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. Results Average NO2 concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO2concentrations were 63μg/m3 and 49μg/m3 in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m3 (95% CI: 59μg/m3 – 68μg/m3); local traffic (n = 16): 48μg/m3 (95% CI: 44μg/m3 – 52μg/m3) (p < 0.001). Conclusion The differences in NO2 levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available.
Resumo:
We consider a simple (but fully three-dimensional) mathematical model for the electromagnetic exploration of buried, perfect electrically conducting objects within the soil underground. Moving an electric device parallel to the ground at constant height in order to generate a magnetic field, we measure the induced magnetic field within the device, and factor the underlying mathematics into a product of three operations which correspond to the primary excitation, some kind of reflection on the surface of the buried object(s) and the corresponding secondary excitation, respectively. Using this factorization we are able to give a justification of the so-called sampling method from inverse scattering theory for this particular set-up.
Resumo:
Background: The goal of this study was to determine whether site-specific differences in the subgingival microbiota could be detected by the checkerboard method in subjects with periodontitis. Methods: Subjects with at least six periodontal pockets with a probing depth (PD) between 5 and 7 mm were enrolled in the study. Subgingival plaque samples were collected with sterile curets by a single-stroke procedure at six selected periodontal sites from 161 subjects (966 subgingival sites). Subgingival bacterial samples were assayed with the checkerboard DNA-DNA hybridization method identifying 37 species. Results: Probing depths of 5, 6, and 7 mm were found at 50% (n = 483), 34% (n = 328), and 16% (n = 155) of sites, respectively. Statistical analysis failed to demonstrate differences in the sum of bacterial counts by tooth type (P = 0.18) or specific location of the sample (P = 0.78). With the exceptions of Campylobacter gracilis (P <0.001) and Actinomyces naeslundii (P <0.001), analysis by general linear model multivariate regression failed to identify subject or sample location factors as explanatory to microbiologic results. A trend of difference in bacterial load by tooth type was found for Prevotella nigrescens (P <0.01). At a cutoff level of >/=1.0 x 10(5), Porphyromonas gingivalis and Tannerella forsythia (previously T. forsythensis) were present at 48.0% to 56.3% and 46.0% to 51.2% of sampled sites, respectively. Conclusions: Given the similarities in the clinical evidence of periodontitis, the presence and levels of 37 species commonly studied in periodontitis are similar, with no differences between molar, premolar, and incisor/cuspid subgingival sites. This may facilitate microbiologic sampling strategies in subjects during periodontal therapy.
Resumo:
Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^
Resumo:
Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership
Resumo:
Date of Acceptance: 06/03/2015 Acknowledgement: This research was funded by NCR and the Northern Research Partnership