998 resultados para expectation value


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combination of the variational principle, expectation value and Quantum Monte Carlo method is used to solve the Schrödinger equation for some simple systems. The results are accurate and the simplicity of this version of the Variational Quantum Monte Carlo method provides a powerful tool to teach alternative procedures and fundamental concepts in quantum chemistry courses. Some numerical procedures are described in order to control accuracy and computational efficiency. The method was applied to the ground state energies and a first attempt to obtain excited states is described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a 4D chiral Thirring model we analyze the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current (psi) over bar gamma(mu)gamma(5)psi may assume a nonzero vacuum expectation value which triggers Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee-like model containing a Chem-Simons term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamical breaking of gauge symmetry in the supersymmetric quantum electrodynamics in three-dimensional spacetime is studied at two-loop approximation. At this level, the effective superpotential is evaluated in a supersymmetric phase. At one-loop order, we observe a generation of the Chern-Simons term due to a parity violating term present in the classical action. At two-loop order, the scalar background superfield acquires a nonvanishing vacuum expectation value, generating a mass term A(alpha)A(alpha) through the Coleman-Weinberg mechanism. It is observed that the mass of gauge superfield is predominantly an effect of the topological Chern-Simons term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form psi(r) = u(r)/r, where u(0) not equal 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a simple extension of the Standard Model by adding two Higgs triplets and a complex scalar singlet to its particle content. In this framework, the CP symmetry is spontaneously broken at high energies by the complex vacuum expectation value of the scalar singlet. Such a breaking leads to leptonic CP violation at low energies. The model also exhibits an A(4) X Z(4) flavor symmetry which, after being spontaneously broken at a high-energy scale, yields a tribimaximal pattern in the lepton sector. We consider small perturbations around the tribimaximal vacuum alignment condition in order to generate nonzero values of theta(13), as required by the latest neutrino oscillation data. It is shown that the value of theta(13) recently measured by the Daya Bay Reactor Neutrino Experiment can be accommodated in our framework together with large Dirac-type CP violation. We also address the viability of leptogenesis in our model through the out-of-equilibrium decays of the Higgs triplets. In particular, the CP asymmetries in the triplet decays into two leptons are computed and it is shown that the effective leptogenesis and low-energy CP-violating phases are directly linked.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest treball es descriu l'ús de les mesures de semblança molecular quàntica (MSMQ) per a caracteritzar propietats i activitats biològiques moleculars, i definir descriptors emprables per a construir models QSAR i QSPR. L'estudi que es presenta consisteix en la continuació d'un treball recent, on es descrivien relacions entre el paràmetre log P i MSMQ, donant així una alternativa a aquest parimetre hidrofòbic empíric. L'actual contribució presenta una nova mesura, capaç d'estendre l'ús de les MSMQ, que consisteix en l'energia de repulsió electró-electró (Vee). Aquest valor, disponible normalment a partir de programari de química quàntica, considera la molècula com una sola entitat, i no cal recórrer a l'ús decontribucions de fragments. La metodologia s'ha aplicat a cinc tipus diferents de compostos on diferents propietats moleculars i activitats biològiques s'han correlacionat amb Vee com a únic descriptor molecular. En tots els casos estudiats, s'han obtingut correlacions satisfactòries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive the back reaction on the gravitational field of a straight cosmic string during its formation due to the gravitational coupling of the string to quantum matter fields. A very simple model of string formation is considered. The gravitational field of the string is computed in the linear approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction effect is obtained by solving perturbatively the semiclassical Einsteins equations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in-in effective action formalism is used to derive the semiclassical correction to Einsteins equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the gravitational field of the string is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of TeX = 4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The holographic isotropization of a highly anisotropic, homogeneous, strongly coupled, non-Abelian plasma was simplified in ref. [1] by linearizing Einstein"s equations around the final, equilibrium state. This approximation reproduces the expectation value of the boundary stress tensor with a 20% accuracy. Here we elaborate on these results and extend them to observables that are directly sensitive to the bulk interior, focusing for simplicity on the entropy production on the event horizon. We also consider next-to-leading-order corrections and show that the leading terms alone provide a better description of the isotropization process for the states that are furthest from equilibrium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prosessiteollisuudessa syntyviä ilmapäästöjä seurataan jatkuvatoimisilla mittausjärjestelmillä. Jatkuvatoimisen päästöjen seurantajärjestelmän tulee tuottaa luotettavaa tietoa prosessin aiheuttamista päästöistä. Päästöjen seurannasta saataviin tuloksiin syntyy aina epävarmuutta, joka koostuu mittausolosuhteiden, mittausjärjestelmän tai mittauksen suorittamisen aiheuttamista epävarmuuksista. Työn alussa on kuvattu Stora Enso Oyj:n Imatran tehtaitten typen oksidien jatkuvatoiminen päästöjen seurantamenetelmä ja selvitetty seurantajärjestelmän suorittama päästöjen laskentamenetelmä. Lisäksi on tuotu esille päästömittaustuloksen epävarmuuteen vaikuttavia tekijöitä kyseisessä järjestelmässä. Selvityksessä merkittävimmäksi järjestelmän luotettavuuteen vaikuttavaksi tekijäksi osoittautui virheellinen mittaustieto, jota voidaan hallita järjestelmässä asettamalla raja-arvo mittaustiedolle ja tehostamalla käytönaikaista valvontaa. Lisäksi korvaamalla häiriöaikainen virheellinen mittaustieto laskennallisella pitoisuuden odotusarvolla päästölaskentaa varten, tuottaa seurantajärjestelmä luotettavampia typen oksidien päästötietoja raportointia varten.