947 resultados para expander graphs
Resumo:
Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
We report weaknesses in two algebraic constructions of low-density parity-check codes based on expander graphs. The Margulis construction gives a code with near-codewords, which cause problems for the sum-product decoder; The Ramanujan-Margulis construction gives a code with low-weight codewords, which produce an error-floor. © 2004 Elsevier B.V.
Resumo:
We report weaknesses in two algebraic constructions of low-density parity-check codes based on expander graphs. The Margulis construction gives a code with near-codewords, which cause problems for the sum-product decoder; The Ramanujan-Margulis construction gives a code with low-weight codewords, which produce an error-floor. ©2003 Published by Elsevier Science B. V.
Resumo:
Spectral decomposition has rarely been used to investigate complex networks. In this work we apply this concept in order to define two kinds of link-directed attacks while quantifying their respective effects on the topology. Several other kinds of more traditional attacks are also adopted and compared. These attacks had substantially diverse effects, depending on each specific network (models and real-world structures). It is also shown that the spectrally based attacks have special effects in affecting the transitivity of the networks.
Resumo:
We present a method for topological SLAM that specifically targets loop closing for edge-ordered graphs. Instead of using a heuristic approach to accept or reject loop closing, we propose a probabilistically grounded multi-hypothesis technique that relies on the incremental construction of a map/state hypothesis tree. Loop closing is introduced automatically within the tree expansion, and likely hypotheses are chosen based on their posterior probability after a sequence of sensor measurements. Careful pruning of the hypothesis tree keeps the growing number of hypotheses under control and a recursive formulation reduces storage and computational costs. Experiments are used to validate the approach.
Resumo:
This paper describes the use of property graphs for mapping data between AEC software tools, which are not linked by common data formats and/or other interoperability measures. The intention of introducing this in practice, education and research is to facilitate the use of diverse, non-integrated design and analysis applications by a variety of users who need to create customised digital workflows, including those who are not expert programmers. Data model types are examined by way of supporting the choice of directed, attributed, multi-relational graphs for such data transformation tasks. A brief exemplar design scenario is also presented to illustrate the concepts and methods proposed, and conclusions are drawn regarding the feasibility of this approach and directions for further research.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed. Keywords: Edge-weighting; weighted graphs; gene expression; bi-clustering
Resumo:
The literacy demands of tables and graphs are different from those of prose texts such as narrative. This paper draws from part of a qualitative case study which sought to investigate strategies that scaffold and enhance the teaching and learning of varied representations in text. As indicated in the paper, the method focused on the teaching and learning of tables and graphs with use of Freebody and Luke's (1990) four resources model from literacy education.
Resumo:
The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. This paper describes a near-optimal two-step algorithm that constructs the Reeb graph of a Morse function defined over manifolds in any dimension. The algorithm first identifies the critical points of the input manifold, and then connects these critical points in the second step to obtain the Reeb graph. A simplification mechanism based on topological persistence aids in the removal of noise and unimportant features. A radial layout scheme results in a feature-directed drawing of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb graph construction in practice and its applications.
Resumo:
A unit cube in k-dimension (or a k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k, where each R-i is a closed interval on the real line of the form [a(j), a(i), + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. Many NP-complete graph problems can be solved efficiently or have good approximation ratios in graphs of low cubicity. In most of these cases the first step is to get a low dimensional cube representation of the given graph. It is known that for graph G, cub(G) <= left perpendicular2n/3right perpendicular. Recently it has been shown that for a graph G, cub(G) >= 4(Delta + 1) In n, where n and Delta are the number of vertices and maximum degree of G, respectively. In this paper, we show that for a bipartite graph G = (A boolean OR B, E) with |A| = n(1), |B| = n2, n(1) <= n(2), and Delta' = min {Delta(A),Delta(B)}, where Delta(A) = max(a is an element of A)d(a) and Delta(B) = max(b is an element of B) d(b), d(a) and d(b) being the degree of a and b in G, respectively , cub(G) <= 2(Delta' + 2) bar left rightln n(2)bar left arrow. We also give an efficient randomized algorithm to construct the cube representation of G in 3 (Delta' + 2) bar right arrowIn n(2)bar left arrow dimension. The reader may note that in general Delta' can be much smaller than Delta.
Resumo:
We show that the cubicity of a connected threshold graph is equal to inverted right perpendicularlog(2) alpha inverted left perpendicular, where alpha is its independence number.