615 resultados para exons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central giant cell granuloma (CGCG) is a benign lesion with unpredictable biological behaviour ranging from a slow-growing asymptomatic swelling to an aggressive lesion associated with pain, bone and root resorption and also tooth displacement. The aetiology of the disease is unclear with controversies in the literature on whether it is mainly of reactional, inflammatory, infectious, neoplasic or genetic origin. To test the hypothesis that mutations in the SH3BP2 gene, as the principal cause of cherubism, are also responsible for, or at least associated with, giant cell lesions, 30 patients with CGCG were recruited for this study and subjected to analysis of germ line and/or somatic alterations. In the blood samples of nine patients, one codon alteration in exon 4 was found, but this alteration did not lead to changes at the amino acid level. In conclusion, if a primary genetic defect is the cause for CGCG it is either located in SH3BP2 gene exons not yet related to cherubism or in a different gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current prediction or genes in the Plasmodium falciparum genome database relies upon a limited number of specially developed computer algorithms. We have re-annotated the sequence of chromosome 2 of P. falciparum by a computer-assisted manual analysis. which is described here. Of 161 newly predicted introns, we have experimentally confirmed 98. We regard 110 introns from the previously published analyses as probable, we delete 3, change 26 and add 135. We recognise 214 genes in chromosome 2. We have predicted introns in 121 genes. The increased complexity or gene structure on chromosome 2 is likely to be mirrored by the entire genome. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/similar tothanaraj/altExtron/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of transcription using genomic tiling arrays has lead to the identification of numerous additional exons. One example is the MECP2 gene on the X chromosome; using 5'RACE and RT-PCR in human tissues and cell lines, we have found more than 70 novel exons (RACEfrags) connecting to at least one annotated exon.. We sequenced all MECP2-connected exons and flanking sequences in 3 groups: 46 patients with the Rett syndrome and without mutations in the currently annotated exons of the MECP2 and CDKL5 genes; 32 patients with the Rett syndrome and identified mutations in the MECP2 gene; 100 control individuals from the same geoethnic group. Approximately 13 kb were sequenced per sample, (2.4 Mb of DNA resequencing). A total of 75 individuals had novel rare variants (mostly private variants) but no statistically significant difference was found among the 3 groups. These results suggest that variants in the newly discovered exons may not contribute to Rett syndrome. Interestingly however, there are about twice more variants in the novel exons than in the flanking sequences (44 vs. 21 for approximately 1.3 Mb sequenced for each class of sequences, p=0.0025). Thus the evolutionary forces that shape these novel exons may be different than those of neighboring sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alternatively spliced exons play an important role in the diversification of gene function in most metazoans and are highly regulated by conserved motifs in exons and introns. Two contradicting properties have been associated to evolutionary conserved alternative exons: higher sequence conservation and higher rate of non-synonymous substitutions, relative to constitutive exons. In order to clarify this issue, we have performed an analysis of the evolution of alternative and constitutive exons, using a large set of protein coding exons conserved between human and mouse and taking into account the conservation of the transcript exonic structure. Further, we have also defined a measure of the variation of the arrangement of exonic splicing enhancers (ESE-conservation score) to study the evolution of splicing regulatory sequences. We have used this measure to correlate the changes in the arrangement of ESEs with the divergence of exon and intron sequences. Results: We find evidence for a relation between the lack of conservation of the exonic structure and the weakening of the sequence evolutionary constraints in alternative and constitutive exons. Exons in transcripts with non-conserved exonic structures have higher synonymous (dS) and non-synonymous (dN) substitution rates than exons in conserved structures. Moreover, alternative exons in transcripts with non-conserved exonic structure are the least constrained in sequence evolution, and at high EST-inclusion levels they are found to be very similar to constitutive exons, whereas alternative exons in transcripts with conserved exonic structure have a dS significantly lower than average at all EST-inclusion levels. We also find higher conservation in the arrangement of ESEs in constitutive exons compared to alternative ones. Additionally, the sequence conservation at flanking introns remains constant for constitutive exons at all ESE-conservation values, but increases for alternative exons at high ESE-conservation values. Conclusion: We conclude that most of the differences in dN observed between alternative and constitutive exons can be explained by the conservation of the transcript exonic structure. Low dS values are more characteristic of alternative exons with conserved exonic structure, but not of those with non-conserved exonic structure. Additionally, constitutive exons are characterized by a higher conservation in the arrangement of ESEs, and alternative exons with an ESE-conservation similar to that of constitutive exons are characterized by a conservation of the flanking intron sequences higher than average, indicating the presence of more intronic regulatory signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The a-globin major genes from diploid and tetraploid Odontophrynus americanus were studied using PCR-based technology. The cloned and sequenced amplified fragments were shown to contain most of the exon II sequences as well as the whole exon III sequence of the a-globin gene. Unexpectedly, intron 2 was entirely absent in the amplified fragments of both 2n and 4n origin. High conservation was observed among the obtained sequences when compared to corresponding sequences from human and Xenopus laevis origin. The possibility that these sequences might be pseudogenes is raised

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is strong evidence that the patched (PTCH) gene is a gene for susceptibility to the nevoid basal cell carcinoma syndrome. PTCH has also been shown to mutate in both familial and sporadic basal cell carcinomas. However, mutations of the gene seem to be rare in squamous cell carcinomas. In order to characterize the role of the gene in the broader spectrum of sporadic skin malignant and pre-malignant lesions, we performed a polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis of genomic DNA extracted from 105 adult patients (46 females and 59 males). There were 66 patients with basal cell carcinomas, 30 with squamous cell carcinomas, 2 with malignant melanomas and 7 patients with precancerous lesions. Two tissue samples were collected from each patient, one from the central portion of the tumor and another from normal skin. Using primers that encompass the entire exon 1, exon 8 and exon 18, where most of the mutations have been detected, we were unable to demonstrate any band shift. Three samples suspected to present aberrant migrating bands were excised from the gel and sequenced directly. In addition, we sequenced 12 other cases, including tumors and corresponding normal samples. A wild-type sequence was found in all 15 cases. Although our results do not exclude the presence of clonal alterations of the PTCH gene in skin cancers or mutations in other exons that were not screened, the present data do not support the presence of frequent mutations reported for non-melanoma skin cancer of other populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Duchenne and Becker Muscular Dystrophies (DMD/DMB) are X-linked recessive diseases characterized by progressive muscle weakness and wasting, loss of motor skills and death after the second decade of life. Deletions are the most prevalent mutations that affect the dystrophin gene, which spans 79 exons.Objective: Identify deletions on the dystrophin gene in 58 patients affected with DMD.Methods: Through multiplex PCR identify deletions on the dystrophin gene in 58 patients with DMD and observe the frequency of this mutation in our population.Results: We found deletions in 1.72% of patients (1 of 58 persons). Deletions were not the principal cause of disease in our population. It is possible that duplications and point mutations caused this illness in our patients.Conclusions: The frequency of deletions in the 15 exons analyzed from the dystrophin gene was low. The predominant types of mutation in our patients` samples were not deletions as has been observed in the literature worldwide, therefore, it is important to determine other types of mutations as are duplications and point mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)