993 resultados para exact boundary control
Resumo:
We establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Admission controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission controllers are based on suÆcient (but not necessary) capacity bounds in order to maintain a low computational complexity. In this paper we present how exact admission-control for aperiodic tasks can be eÆciently obtained. Our rst result is an admission controller for purely aperiodic task sets where the test has the same runtime complexity as utilization-based tests. Our second result is an extension of the previous controller for a baseload of periodic tasks. The runtime complexity of this test is lower than for any known exact admission-controller. In addition to presenting our main algorithm and evaluating its performance, we also discuss some general issues concerning admission controllers and their implementation.
Resumo:
We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
This study examines the effect of democratization on a key education reform across three Mexican states. Previous scholarship has found a positive effect of electoral competition on social spending, as leaders seek to improve their reelection prospects by delivering services to voters. However, the evidence presented here indicates that more money has not meant better educational outcomes in Mexico. Rather, new and vulnerable elected leaders are especially susceptible to the demands of powerful interest groups at the expense of accountability to constituents. In this case, the dominant teachers' union has used its leverage to exact greater control over the country's resource-rich merit pay program for teachers. It has exploited this control to increase salaries and decrease standards for advancement up the remuneration ladder. The evidence suggests that increased electoral competition has led to the empowerment of entrenched interests rather than voters, with an overall negative effect on education.
Resumo:
A unified low complexity sign-bit correlation based symbol timing synchronization scheme for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) Ultra Wideband (UWB) receiver system is proposed. By using the time domain sequence of the packet/frame synchronization preamble, the proposed scheme is in charge of detecting the upcoming MB-OFDM symbol and it estimates the exact boundary of the start of Fast Fourier Transform (FFT) window. The proposed algorithm is implemented by using an efficient Hardware-Software co-simulation methodology. The effectiveness of the proposed synchronization scheme and the optimization criteria is confirmed by hardware implementation results.
Resumo:
We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.
Resumo:
Quantum integrability is established for the one-dimensional supersymmetric U model with boundary terms by means of the quantum inverse-scattering method. The boundary supersymmetric U chain is solved by using the coordinate-space Bethe-ansatz technique and Bethe-ansatz equations are derived. This provides us with a basis for computing the finite-size corrections to the low-lying energies in the system. [S0163-1829(98)00425-1].
Resumo:
The Bariev model with open boundary conditions is introduced and analysed in detail in the framework of the Quantum Inverse Scattering Method. Two classes of independent boundary reflecting K-matrices leading to four different types of boundary fields are obtained by solving the reflection equations. The models are exactly solved by means of the algebraic nested Bethe ansatz method and the four sets or Bethe ansatz equations as well as their corresponding energy expressions are derived. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.
Resumo:
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.