865 resultados para ex-vivo diagnosis
Resumo:
Lung cancer is the most common cause of cancer death. The conventional method of confirming the diagnosis is bronchoscopy, inspecting the airways of the patient with a fiber optic endoscope. A number of studies have shown that Raman spectroscopy can diagnose lung cancer in vitro. In this study, Raman spectra were obtained from ex vivo normal and malignant lung tissue using a minifiber optic Raman probe suitable for insertion into the working channel of a bronchoscope. Shifted subtracted Raman spectroscopy was used to reduce the fluorescence from the lung tissue. Using principal component analysis with a leave-one-out analysis, the tissues were classified accurately. This novel technique has the potential to obtain Raman spectra from tumors from patients with lung cancer in vivo.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.
Resumo:
Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.
Resumo:
The emergence of highly chloroquine (CQ) resistant P. vivax in Southeast Asia has created an urgent need for an improved understanding of the mechanisms of drug resistance in these parasites, the development of robust tools for defining the spread of resistance, and the discovery of new antimalarial agents. The ex vivo Schizont Maturation Test (SMT), originally developed for the study of P. falciparum, has been modified for P. vivax. We retrospectively analysed the results from 760 parasite isolates assessed by the modified SMT to investigate the relationship between parasite growth dynamics and parasite susceptibility to antimalarial drugs. Previous observations of the stage-specific activity of CQ against P. vivax were confirmed, and shown to have profound consequences for interpretation of the assay. Using a nonlinear model we show increased duration of the assay and a higher proportion of ring stages in the initial blood sample were associated with decreased effective concentration (EC50) values of CQ, and identify a threshold where these associations no longer hold. Thus, starting composition of parasites in the SMT and duration of the assay can have a profound effect on the calculated EC50 for CQ. Our findings indicate that EC50 values from assays with a duration less than 34 hours do not truly reflect the sensitivity of the parasite to CQ, nor an assay where the proportion of ring stage parasites at the start of the assay does not exceed 66%. Application of this threshold modelling approach suggests that similar issues may occur for susceptibility testing of amodiaquine and mefloquine. The statistical methodology which has been developed also provides a novel means of detecting stage-specific drug activity for new antimalarials.
Resumo:
Limbal stem cell deficiency leads to conjunctivalisation of the cornea and subsequent loss of vision. The recent development of transplantation of ex-vivo amplified corneal epithelium, derived from limbal stem cells, has shown promise in treating this challenging condition. The purpose of this research was to compare a variety of cell sheet carriers for their suitability in creating a confluent corneal epithelium from amplified limbal stem cells. Cadaveric donor limbal cells were cultured using an explant technique, free of 3T3 feeder cells, on a variety of cell sheet carriers, including denuded amniotic membrane, Matrigel, Myogel and stromal extract. Comparisons in rate of growth and degree of differentiation were made, using immunocytochemistry (CK3, CK19 and ABCG2). The most rapid growth was observed on Myogel and denuded amniotic membrane, these two cell carriers also provided the most reliable substrata for achieving confluence. The putative limbal stem cell marker, ABCG2, stained positively on cells grown over Myogel and Matrigel but not for those propagated on denuded amniotic membrane. In the clinical setting amniotic membrane has been demonstrated to provide a suitable carrier for limbal stem cells and the resultant epithelium has been shown to be successful in treating limbal stem cell deficiency. Myogel may provide an alternative cell carrier with a further reduction in risk as it is has the potential to be derived from an autologous muscle biopsy in the clinical setting.
Resumo:
The aim of this study was to evaluate the ex vivo oestrogen responsiveness of human proliferative phase endometrium using short-term explant cultures. The effects of oestrogen (17beta-E2) on proliferation and the expression of oestrogen-responsive genes known to be involved in regulating endometrial function were evaluated. Three distinct response patterns could be distinguished: (1) the menstrual (M) phase pattern (cycle days 2-5), which is characterised by a complete lack in the proliferative response to 17beta-E2, while an increased expression of AR (2.6-fold, P<0.01), PR (2.7-fold, P<0.01) and COX-2 (3.5-fold, P<0.01) at the mRNA level was observed and a similar upregulation was also found for AR, PR and COX-2 at the protein level; (2) the early proliferative (EP) phase pattern (cycle days 6-10) with 17beta-E2 enhanced proliferation in the stroma (1.7-fold, P<0.05), whereas the expression of AR, PR and COX-2 were not affected at the mRNA and protein levels and ER-a mRNA and protein levels were significantly reduced by 17beta-E2; (3) the late proliferative (LP) phase pattern (cycle days 11-14), which is characterised by a moderate stimulation of proliferation (1.4-fold, P<0.05) and PR mRNA expression (1.7-fold, P<0.01) by 17beta-E2. In conclusion, three distinct response patterns to 17beta-E2 could be identified with respect to proliferation and the expression of known oestrogen-responsive genes in human proliferative phase endometrium explant cultures.
Resumo:
Background Extracorporeal membrane oxygenation (ECMO) circuits have been shown to sequester circulating blood compounds such as drugs based on their physicochemical properties. This study aimed to describe the disposition of macro- and micronutrients in simulated ECMO circuits. Methods Following baseline sampling, known quantities of macro- and micronutrients were injected post oxygenator into ex vivo ECMO circuits primed with the fresh human whole blood and maintained under standard physiologic conditions. Serial blood samples were then obtained at 1, 30 and 60 min and at 6, 12 and 24 h after the addition of nutrients, to measure the concentrations of study compounds using validated assays. Results Twenty-one samples were tested for thirty-one nutrient compounds. There were significant reductions (p < 0.05) in circuit concentrations of some amino acids [alanine (10%), arginine (95%), cysteine (14%), glutamine (25%) and isoleucine (7%)], vitamins [A (42%) and E (6%)] and glucose (42%) over 24 h. Significant increases in circuit concentrations (p < 0.05) were observed over time for many amino acids, zinc and vitamin C. There were no significant reductions in total proteins, triglycerides, total cholesterol, selenium, copper, manganese and vitamin D concentrations within the ECMO circuit over a 24-h period. No clear correlation could be established between physicochemical properties and circuit behaviour of tested nutrients. Conclusions Significant alterations in macro- and micronutrient concentrations were observed in this single-dose ex vivo circuit study. Most significantly, there is potential for circuit loss of essential amino acid isoleucine and lipid soluble vitamins (A and E) in the ECMO circuit, and the mechanisms for this need further exploration. While the reductions in glucose concentrations and an increase in other macro- and micronutrient concentrations probably reflect cellular metabolism and breakdown, the decrement in arginine and glutamine concentrations may be attributed to their enzymatic conversion to ornithine and glutamate, respectively. While the results are generally reassuring from a macronutrient perspective, prospective studies in clinical subjects are indicated to further evaluate the influence of ECMO circuit on micronutrient concentrations and clinical outcomes.
Resumo:
The purpose of this study was to establish a three-dimensional fluorescent tooth model to investigate bacterial viability against intra-canal medicaments across the thickness and surface of root dentine. Dental microbial biofilms (Enterococcus faecalis and Streptococcus mutans) were established on the external root surface and bacterial kill was monitored over time against intra-canal medicament (Ca(OH)2 ) using fluorescent microscopy in conjunction with BacLight SYTO9 and propidium iodide stains. An Olympus digital camera fitted to SZX16 fluorescent microscope captured images of bacterial cells in biofilms on the external root surface. Viability of biofilm was measured by calculating the total pixel area of green (viable bacteria) and red (non-viable bacteria) for each image using ImageJ® software. All data generated were assessed for normality and then analysed using a Mann-Whitney t-test. The viability of S. mutans biofilm following Ca(OH)2 treatment showed a significant decline compared with the untreated group (P = 0.0418). No significant difference was seen for E. faecalis biofilm between the Ca(OH)2 and untreated groups indicating Ca(OH)2 medicament is ineffective against E. faecalis biofilm. This novel three-dimensional fluorescent biofilm model provides a new clinically relevant tool for testing of medicaments against dental biofilms.
Resumo:
Facile synthesis of biaryl pyrazole sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716, 1) and an investigation of the effect of replacement of the –CO group in the compound 1 by the –SO2 group in the aminopiperidine region is reported. Primary ex-vivo pharmacological testing and in vitro screening of sulfonamide derivative 2 showed the loss of CB1 receptor antagonism.