4 resultados para evoluutioalgoritmit
Resumo:
Evoluutioalgoritmit ovat viime vuosina osoittautuneet tehokkaiksi menetelmiksi globaalien optimointitehtävien ratkaisuun. Niiden vahvuutena on etenkin yleiskäyttöisyys ja kyky löytää globaali ratkaisu juuttumatta optimoitavan tavoitefunktion paikallisiin optimikohtiin. Tässä työssä on tavoitteena kehittää uusi, normaalijakaumaan perustuva mutaatio-operaatio differentiaalievoluutioalgoritmiin, joka on eräs uusimmista evoluutiopohjaisista optimointialgoritmeista. Menetelmän oletetaan vähentävän entisestään sekä populaation ennenaikaisen suppenemisen, että algoritmin tilojen juuttumisen riskiä ja se on teoreettisesti osoitettavissa suppenevaksi. Tämä ei päde alkuperäisen differentiaalievoluution tapauksessa, koska on voitu osoittaa, että sen tilanmuutokset voivat pienellä todennäköisyydellä juuttua. Työssä uuden menetelmän toimintaa tarkastellaan kokeellisesti käyttäen testiongelmina monirajoiteongelmia. Rajoitefunktioiden käsittelyyn käytetään Jouni Lampisen kehittämää, Pareto-optimaalisuuden periaatteeseen perustuvaa menetelmää. Samalla saadaan kerättyä lisää kokeellista näyttöä myös tämän menetelmän toiminnasta. Kaikki käytetyt testiongelmat kyettiin ratkaisemaan sekä alkuperäisellä differentiaalievoluutiolla, että uutta mutaatio-operaatiota käyttävällä versiolla. Uusi menetelmä osoittautui kuitenkin luotettavammaksi sellaisissa tapauksissa, joissa alkuperäisellä algoritmilla oli vaikeuksia. Lisäksi useimmat ongelmat kyettiin ratkaisemaan luotettavasti pienemmällä populaation koolla kuin alkuperäistä differentiaalievoluutiota käytettäessä. Uuden menetelmän käyttö myös mahdollistaa paremmin sellaisten kontrolliparametrien käytön, joilla hausta saadaan rotaatioinvariantti. Laskennallisesti uusi menetelmä on hieman alkuperäistä differentiaalievoluutiota raskaampi ja se tarvitsee yhden kontrolliparametrin enemmän. Uusille kontrolliparametreille määritettiin kuitenkin mahdollisimman yleiskäyttöiset arvot, joita käyttämällä on mahdollista ratkaista suuri joukko erilaisia ongelmia.
Resumo:
Tässä diplomityössä määritellään varmistusjärjestelmän simulointimalli eli varmistusmalli. Varmistusjärjestelmän toiminta optimoidaan kyseisen varmistusmallin avulla. Optimoinnin tavoitteena on parantaa varmistusjärjestelmän tehokkuutta. Parannusta etsitään olemassa olevien varmistusjärjestelmän resurssien maksimaalisella hyödyntämisellä. Varmistusmalli optimoidaan evoluutioalgoritmin avulla. Optimoinnissa on useita tavoitteita, jotka ovat ristiriidassa keskenään. Monitavoiteoptimointiongelma muunnetaan yhden tavoitteen optimointiongelmaksi muodostamalla tavoitefunktio painotetun summan menetelmän avulla. Rinnakkain edellisen menetelmän kanssa käytetään myös Pareto-optimointia. Pareto-optimaalisen rintaman pisteiden etsintä ohjataan lähelle painotetun summan menetelmän optimipistettä. Evoluutioalgoritmin toteutuksessa käytetään hyväksi varmistusjärjestelmiin liittyvää ongelmakohtaista tietoa. Työn tuloksena saadaan varmistusjärjestelmän simulointi- sekä optimointityökalu. Simulointityökalua käytetään kartoittamaan nykyisen varmistusjärjestelmän toimivuutta. Optimoinnin avulla tehostetaan varmistusjärjestelmän toimintaa. Työkalua voidaan käyttää myös uusien varmistusjärjestelmien suunnittelussa sekä nykyisten varmistusjärjestelmien laajentamisessa.
Resumo:
Diplomityössä esitetään menetelmä populaation monimuotoisuuden mittaamiseen liukulukukoodatuissa evoluutioalgoritmeissa, ja tarkastellaan kokeellisesti sen toimintaa. Evoluutioalgoritmit ovat populaatiopohjaisia menetelmiä, joilla pyritään ratkaisemaan optimointiongelmia. Evoluutioalgoritmeissa populaation monimuotoisuuden hallinta on välttämätöntä, jotta suoritettu haku olisi riittävän luotettavaa ja toisaalta riittävän nopeaa. Monimuotoisuuden mittaaminen on erityisen tarpeellista tutkittaessa evoluutioalgoritmien dynaamista käyttäytymistä. Työssä tarkastellaan haku- ja tavoitefunktioavaruuden monimuotoisuuden mittaamista. Toistaiseksi ei ole ollut olemassa täysin tyydyttäviä monimuotoisuuden mittareita, ja työn tavoitteena on kehittää yleiskäyttöinen menetelmä liukulukukoodattujen evoluutioalgoritmien suhteellisen ja absoluuttisen monimuotoisuuden mittaamiseen hakuavaruudessa. Kehitettyjen mittareiden toimintaa ja käyttökelpoisuutta tarkastellaan kokeellisesti ratkaisemalla optimointiongelmia differentiaalievoluutioalgoritmilla. Toteutettujen mittareiden toiminta perustuu keskihajontojen laskemiseen populaatiosta. Keskihajonnoille suoritetaan skaalaus, joko alkupopulaation tai nykyisen populaation suhteen, riippuen lasketaanko absoluuttista vai suhteellista monimuotoisuutta. Kokeellisessa tarkastelussa havaittiin kehitetyt mittarit toimiviksi ja käyttökelpoisiksi. Tavoitefunktion venyttäminen koordinaattiakseleiden suunnassa ei vaikuta mittarin toimintaan. Myöskään tavoitefunktion kiertäminen koordinaatistossa ei vaikuta mittareiden tuloksiin. Esitetyn menetelmän aikakompleksisuus riippuu lineaarisesti populaation koosta, ja mittarin toiminta on siten nopeaa suuriakin populaatioita käytettäessä. Suhteellinen monimuotoisuus antaa vertailukelpoisia tuloksia riippumatta parametrien lukumäärästä tai populaation koosta.
Resumo:
Tässä diplomityössä optimoitiin nelivaiheinen 1 MWe höyryturbiinin prototyyppimalli evoluutioalgoritmien avulla sekä tutkittiin optimoinnista saatuja kustannushyötyjä. Optimoinnissa käytettiin DE – algoritmia. Optimointi saatiin toimimaan, mutta optimoinnissa käytetyn laskentasovelluksen (semiempiirisiin yhtälöihin perustuvat mallit) luonteesta johtuen optimoinnin tarkkuus CFD – laskennalla suoritettuun tarkastusmallinnukseen verrattuna oli jonkin verran toivottua pienempi. Tulosten em. epätarkkuus olisi tuskin ollut vältettävissä, sillä ongelma johtui puoliempiirisiin laskentamalleihin liittyvistä lähtöoletusongelmista sekä epävarmuudesta sovitteiden absoluuttisista pätevyysalueista. Optimoinnin onnistumisen kannalta tällainen algebrallinen mallinnus oli kuitenkin välttämätöntä, koska esim. CFD-laskentaa ei olisi mitenkään voitu tehdä jokaisella optimointiaskeleella. Optimoinnin aikana ongelmia esiintyi silti konetehojen riittävyydessä sekä sellaisen sopivan rankaisumallin löytämisessä, joka pitäisi algoritmin matemaattisesti sallitulla alueella, muttei rajoittaisi liikaa optimoinnin edistymistä. Loput ongelmat johtuivat sovelluksen uutuudesta sekä täsmällisyysongelmista sovitteiden pätevyysalueiden käsittelyssä. Vaikka optimoinnista saatujen tulosten tarkkuus ei ollut aivan tavoitteen mukainen, oli niillä kuitenkin koneensuunnittelua edullisesti ohjaava vaikutus. DE – algoritmin avulla suoritetulla optimoinnilla saatiin turbiinista noin 2,2 % enemmän tehoja, joka tarkoittaa noin 15 000 € konekohtaista kustannushyötyä. Tämä on yritykselle erittäin merkittävä konekohtainen kustannushyöty. Loppujen lopuksi voitaneen sanoa, etteivät evoluutioalgoritmit olleet parhaimmillaan prototyyppituotteen optimoinnissa. Evoluutioalgoritmeilla teknisten laitteiden optimoinnissa piilee valtavasti mahdollisuuksia, mutta se vaatii kypsän sovelluskohteen, joka tunnetaan jo entuudestaan erinomaisesti tai on yksinkertainen ja aukottomasti laskettavissa.