897 resultados para evolutionary transitions
Resumo:
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by
Resumo:
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Resumo:
• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.
Resumo:
Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.
Resumo:
The evolution of eusociality is one of the major evolutionary transitions of life on earth. For investigating the conditions and processes that are central to the origin of such integrated social organization, it is best to study organisms in which individuals have retained some flexibility in their reproductive strategies. Halictid bees are especially well suited as model organisms, because they show huge variation in social systems, both within and between species. In this thesis, I investigated female reproductive strategies in the primitively eusocial bee Halictus scabiosae, with a focus on the role of helpers, in order to get insight into the mechanisms governing the evolution and maintenance of eusociality. This species produces two broods per year. The females from the first brood can stay in the natal nest to help raise a second brood of males and gynes that become the next-generation foundresses in spring. We first compared the morphology of females from the two broods, as well as the nutrition they receive as larvae. Then we conducted a helper- removal experiment in the field to quantify the effects of the presence of helpers on colony survival and productivity. Finally, we reconstructed pedigree relationships of individuals using microsatellite markers in order to detect who reproduces in the nest and how much individuals drift between nests. We found that first brood females had a uniformly small size and low fat reserves, which may be caused by the restricted pollen and nectar provisions on which they develop. Colony survival and productivity was increased by the presence of a single helper, but the effect was small and mostly limited to small colonies. By inferring parentage within and across colonies, we could determine that females from the first brood rarely reproduce in their natal nests. However, foundresses are frequently replaced, and foundresses and females from the first brood occasionally move to and reproduce in foreign colonies. As a result, colonies often contain offspring from unrelated individuals, and the relatedness of females to the brood they rear is low. Overall, this thesis shows that the reproductive system of H. scabiosae is highly flexible. The production of helpers in the first brood is important for colony success and productivity, but there is a high colony failure rate and part of the first brood females drift and reproduce in foreign nests. Both foundresses and helpers appear to be constrained by harsh environmental conditions or social factors limiting reproduction and independent colony founding. - L'origine des insectes sociaux est un domaine fascinant pour la recherche. Pour comprendre les mécanismes et les conditions qui sont nécessaires pour l'évolution et le maintien de la vie en société, il est judicieux d'étudier des sociétés primitives d'insectes, où toutes les femelles ont conservé la capacité de se reproduire, même si leur rôle comportemental dans la colonie est d'aider sans se reproduire. Une des familles d'abeilles, les halictes, est idéale pour cette sorte de recherche, en raison de la grande variabilité dans leur comportement social. Dans cette thèse, j'ai étudié les stratégies reproductives des femelles de Halictus scabiosae pour mieux comprendre les mécanismes qui influencent l'évolution de la vie en société. Cette espèce produit deux cohortes de couvain par année. Les femelles du premier couvain restent souvent dans leur nid natal pour aider à élever le deuxième couvain, tandis que les femelles du deuxième couvain s'accouplent et hibernent pour devenir les nouvelles fondatrices au printemps suivant. Nous avons d'abord comparé la morphologie des femelles issues des deux couvains ainsi que leur nutrition au stade de larve. Puis, dans une expérience sur le terrain, nous avons quantifié l'apport d'une ouvrière pour la survie et la productivité de la colonie. Finalement, nous avons reconstruit des pedigrees en utilisant des marqueurs génétiques, pour savoir qui se reproduit dans la colonie et combien d'individus migrent entre colonies. Les résultats montrent que les femelles du premier couvain sont uniformément plus petites et plus maigres, ce qui indique que les fondatrices réduisent les provisions de nourriture pour leur premier couvain afin de les inciter à aider dans le nid au lieu de se reproduire indépendamment. Dans l'expérience sur le terrain, la survie et la productivité de la colonie augmentaient avec la présence d'une ouvrière additionnelle, mais l'effet était petit et limité aux petites colonies. Par la reconstruction de pedigrees, nous pouvions constater que les femelles du premier couvain pondent rarement dans leurs nids natals. Les fondatrices cependant sont souvent remplacées en cours de saison, et migrent fréquemment entre nids, tandis que les femelles du premier couvain pondent parfois des oeufs dans des nids étrangers. De ce fait, les colonies contiennent souvent des descendants d'individus étrangers, et la parenté génétique entre les femelles et le deuxième couvain est basse. Cette thèse démontre que le système reproductif de H. scabiosae est très flexible. La production d'ouvrières est importante pour la survie de la colonie et sa productivité, mais le taux d'échec est élevé et une partie des femelles du premier couvain migrent et pondent dans une colonie étrangère. Autant les fondatrices que les ouvrières semblent être contraintes par des conditions environnementales ou sociales qui limitent la reproduction et les nouvelles fondations de colonie. - Die Entstehung von sozialen Lebensformen ist eines der wichtigsten Entwicklungen in der Geschichte des Lebens. Um die Bedingungen oder Prozesse zu verstehen, welche bei der Entstehung und dem Erhalt von sozialen Merkmalen wichtig sind, sollte man Lebewesen untersuchen, welche je nach Umwelteinflüßen ihr soziales Verhalten flexibel ändern können. Furchenbienen (Halictidae) gehören dazu. Diese weisen nämlich ein breites Spektrum verschiedener sozialer Organisationsformen auf, oftmals sogar innerhalb der einzelnen Arten. In meiner Doktorarbeit befasste ich mich mit den Fortpflanzungsstrategien der Weibchen der Skabiosen-Furchenbiene Halictus scabiosae. Diese Art produziert zwei Brüten pro Jahr. Die Weibchen der ersten Brut bleiben dabei meist als Arbeiterinnen in ihrem Geburtsnest, wohingegen die Weibchen der zweiten Brut nach der Paarung überwintern, um im nächsten Frühling neue Kolonien zu gründen. In einem ersten Schritt verglichen wir die beiden Brüten bezüglich der Grösse und der Fettreserven der Weibchen sowie der Pollen-Nektar-Vorräte für die Larven. Dann bestimmten wir in einem Feldexperiment, wieviel eine zusätzliche Arbeiterin zum Überleben und zur Produktiviät der Kolonie beiträgt. Schliesslich ermittelten wir durch genetische Tests die Verwandtschaftsbeziehungen zwischen den Bienen, um herauszufinden, wer in den Kolonien tatsächlich die Eier legt und ob und wieviel die Bienen zwischen verschiedenen Nestern wandern. Wir stellten fest, dass die Weibchen von der ersten Brut einheitlich kleiner sind und weniger Fettreserven besitzen. Das weist daraufhin, dass die Nestgründerin die erste Brut unterernährt, um die Wahrscheinlichkeit zu erhöhen, dass diese Weibchen als Arbeiterinnen im Nest bleiben anstatt sich unabhängig fortzupflanzen. Schon eine einzelne zusätzliche Arbeiterin verbesserte die Überlebenschancen und Produktivität der Kolonie, der Effekt war allerdings klein und auf kleine Kolonien beschränkt. Die Verwandtschaftsanalysen zeigten, dass die Arbeiterinnen nur sehr selten ein Ei in ihr Geburtsnest legen. Erstaunlicherweise wanderten die Nestgründerinnen oft zwischen verschiedenen Nestern. Einige Weibchen der ersten Brut wanderten auch in ein fremdes Nest und produzierten dort Nachkommen. Diese Doktorarbeit zeigt, dass die Fortpflanzungsstrategien der Skabiosen-Furchenbiene tatsächlich sehr flexibel sind. Die Anwesenheit von Arbeiterinnen ist wichtig für das Überleben und die Produktivität der Kolonie. Die Misserfolgsraten bleiben jedoch hoch, und ein Teil der Weibchen der ersten Brut pflanzt sich in fremden Nestern fort. Sowohl die Nestgründerinnen als auch die Weibchen der ersten Brut scheinen durch Umweltsbedingungen oder durch soziale Faktoren in der Wahl ihrer Fortpflanzungs¬strategie eingeschränkt zu sein.
Resumo:
C(4) photosynthesis is an adaptation over the classical C(3) pathway that has evolved multiple times independently. These convergences are accompanied by strong variations among the independent C(4) lineages. The decarboxylating enzyme used to release CO(2) around Rubisco particularly differs between C(4) species, a criterion used to distinguish three distinct biochemical C(4) subtypes. The phosphoenolpyruvate carboxykinase (PCK) serves as a primary decarboxylase in a minority of C(4) species. This enzyme is also present in C(3) plants, where it is responsible for nonphotosynthetic functions. The genetic changes responsible for the evolution of C(4)-specific PCK are still unidentified. Using phylogenetic analyses on PCK sequences isolated from C(3) and C(4) grasses, this study aimed at resolving the evolutionary history of C(4)-specific PCK enzymes. Four independent evolutions of C(4)-PCK were shown to be driven by positive selection, and nine C(4)-adaptive sites underwent parallel genetic changes in different C(4) lineages. C(4)-adaptive residues were also observed in C(4) species from the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) subtype and particularly in all taxa where a PCK shuttle was previously suggested to complement the NADP-ME pathway. Acquisitions of C(4)-specific PCKs were mapped on a species tree, which revealed that the PCK subtype probably appeared at the base of the Chloridoideae subfamily and was then recurrently lost and secondarily reacquired at least three times. Linking the genotype to subtype phenotype shed new lights on the evolutionary transitions between the different C(4) subtypes.
Resumo:
Risella Carter and Laxtorum Blome, two genera from the diverse Rhaetian fauna of the Sandilands Formation, Queen Charlotte Islands, are used to illustrate phyletic trends in latest Triassic Radiolaria. Several distinct morphotypes constituting a lineage are recognized for each genus. These lineages are homogenous, evolved in situ, and show a continuum of variation through time. The evolution of Risella takes place entirely in the Rhaetian and all species disappear at the end of the Triassic. Earliest species of Laxtorum appear in the upper Norian and evolve rapidly in the Rhaetian. All Rhaetian species go extinct at the end of the Triassic but the genus survives marginally into the Lower Jurassic. Morphological transformations in Risella (a paronaellid) are manifest in the external/cortical shell as the shape changes from triangular to three-rayed. In Laxtorum, distal post abdominal chambers become constricted and eventually develop a terminal tube while, at the same time, an increase in size and sphericity is coupled with a reduction in the number of post abdominal chambers. Evolutionary transitions in the Risella lineage probably represent a reversion of the normal hypothesized trend for paronaellid radiolarians. In the Laxtorum lineage, comparisons with other groups and species displaying similar homeomorphies suggest the evolutionary trends are fundamental and occur repeatedly in faunas of all ages.
Resumo:
The problem of how cooperation can evolve between individuals or entities with conflicting interests is central to biology as many of the major evolutionary transitions, from the first replicating molecules to human societies, have required solving this problem. There are many routes to cooperation but humans seem to be distinct from other species as they have more complex and diverse mechanisms, often due to their higher cognitive skills, allowing them to reap the benefits from living in groups. Among those mechanisms, the use of reputation or past experience with others as well as sanctioning mechanisms both seem to be of major importance. They have often been considered separately but the interaction between the two might provide new insights as to how punishment could have appeared as a means to enforce cooperation in early humans. In this thesis, I firstly use theoretical approaches from evolutionary game theory to investigate the evolution of punishment and cooperation through a reputation system based on punitive actions, and compare the efficacy of this system, in terms of cooperation achieved, with one based on cooperative actions. On the other hand, I use empirical approaches from economics to test, in real life, predictions from theoretical models but also to explore further conditions such as environmental variation, constrained memory, or even the scale of competition between individuals. Both approaches have allowed contributing to the understanding of how these factors affect reputation and punishment use, and ultimately how cooperation is achieved.
Resumo:
Extensive social choice theory is used to study the problem of measuring group fitness in a two-level biological hierarchy. Both fixed and variable group size are considered. Axioms are identified that imply that the group measure satisfies a form of consequentialism in which group fitness only depends on the viabilities and fecundities of the individuals at the lower level in the hierarchy. This kind of consequentialism can take account of the group fitness advantages of germ-soma specialization, which is not possible with an alternative social choice framework proposed by Okasha, but which is an essential feature of the index of group fitness for a multicellular organism introduced by Michod, Viossat, Solari, Hurand, and Nedelcu to analyze the unicellular-multicellular evolutionary transition. The new framework is also used to analyze the fitness decoupling between levels that takes place during an evolutionary transition.
Resumo:
In order to analyze a unicellular-multicellular evolutionary transition, a multicellular organism is identified with the vector of viabilities and fecundities of its constituent cells. The Michod–Viossat–Solari–Hurand–Nedelcu index of group fitness for a multicellular organism is a function of these cell viabilities and fecundities. The MVSHN index has been used to analyze the germ-soma specialization and the fitness decoupling between the cell and organism levels that takes place during the transition to multicellularity. In this article, social choice theory is used to provide an axiomatic characterization of the group fitness ordering of vectors of cell viabilities and fecundities underlying the MVSHN index.
Resumo:
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000- fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. Keywords: haldanes, biological time, scaling, pedomorphosis
Resumo:
The genus Mycetagroicus is perhaps the least known of all fungus-growing ant genera, having been first described in 2001 from museum specimens. A recent molecular phylogenetic analysis of the fungus-growing ants demonstrated that Mycetagroicus is the sister to all higher attine ants (Trachymyrmex, Sericomyrmex, Acromyrmex, Pseudoatta, and Atta), making it of extreme importance for understanding the transition between lower and higher attine agriculture. Four nests of Mycetagroicus cerradensis near Uberlandia, Minas Gerais, Brazil were excavated, and fungus chambers for one were located at a depth of 3.5 meters. Based on its lack of gongylidia (hyphal-tip swellings typical of higher attine cultivars), and a phylogenetic analysis of the ITS rDNA gene region, M. cerradensis cultivates a lower attine fungus in Clade 2 of lower attine (G3) fungi. This finding refines a previous estimate for the origin of higher attine agriculture, an event that can now be dated at approximately 21-25 mya in the ancestor of extant species of Trachymyrmex and Sericomyrmex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Evolutionary transitions between aquatic and terrestrial environments are common in vertebrate evolution. These transitions require major changes in most physiological functions, including feeding. Emydid turtles are ancestrally aquatic, with most species naturally feeding only in water, but some terrestrial species can modulate their feeding behavior appropriately for both media. In addition, many aquatic species can be induced to feed terrestrially. A comparison of feeding in both aquatic and terrestrial environments presents an excellent opportunity to investigate the evolution of terrestrial feeding from aquatic feeding, as well as a system within which to develop methods for studying major evolutionary transitions between environments. Individuals from eight species of emydid turtles (six aquatic, two terrestrial) were filmed while feeding underwater and on land. Bite kinematics were analyzed to determine whether aquatic turtles modulated their feeding behavior in a consistent and appropriate manner between environments. Aquatic turtles showed consistent changes between environments, taking longer bites and using more extensive motions of the jaw and hyoid when feeding on land. However, these motions differ from those shown by species that naturally feed in both environments and mostly do not seem to be appropriate for terrestrial feeding. For example, more extensive motions of the hyoid are only effective during underwater suction feeding. Emydids evolving to feed on land probably would have needed to evolve or learn to overcome many, but not all, aspects of the intrinsic emydid response to terrestrial feeding. Studies that investigate major evolutionary transitions must determine what responses to the new environment are shown by naïve individuals in order to fully understand the evolutionary patterns and processes associated with these transitions.
Resumo:
A generally rich radiolarian fauna ranging in age from Quaternary to early Eocene (Zone RP7) was found at five of the eight sites drilled during Ocean Drilling Program (ODP) Leg 199. Of particular interest are the stratigraphically complete assemblages that range in age from middle Miocene (Zone RN5) to early Eocene (Zone RP7), composites of Sites 1218, 1219, and 1220. At the same sites, multisensor track (MST) data show consistent cycles in gamma ray attenuation density, color, and carbonate content that can be correlated on a submeter scale from the early Miocene to early Eocene. In addition, the magnetic reversal records from these three sites allow construction of an absolute timescale. A series of 305 radiolarian morphologic first and last occurrences and evolutionary transitions for radiolarians were determined and correlated directly with the accompanying MST and paleomagnetic data, resulting in a detailed and accurate dating of events. Since many of the bioevents are found at more than one site, it was also possible to test their reliability within the study area. Twelve new species are described: Calocycletta (Calocycletta) anekathen, Dorcadospyris anastasis, Dorcadospyris copelata, Dorcadospyris cyclacantha, Dorcadospyris ombros, Dorcadospyris scambos, Eucyrtidium mitodes, Theocyrtis careotuberosa, Theocyrtis perpumila, Theocyrtis perysinos, Theocyrtis setanios, and Thyrsocyrtis (Pentalacorys) orthotenes.