843 resultados para evolution of sex
Resumo:
Sex-dependent selection often leads to spectacularly different phenotypes in males and females. In species in which sexual dimorphism is not complete, it is unclear which benefits females and males derive from displaying a trait that is typical of the other sex. In barn owls (Tyto alba), females exhibit on average larger black eumelanic spots than males but members of the two sexes display this trait in the same range of possible values. In a 12-year study, we show that selection exerted on spot size directly or on genetically correlated traits strongly favoured females with large spots and weakly favoured males with small spots. Intense directional selection on females caused an increase in spot diameter in the population over the study period. This increase is due to a change in the autosomal genes underlying the expression of eumelanic spots but not of sex-linked genes. Female-like males produced more daughters than sons, while male-like females produced more sons than daughters when mated to a small-spotted male. These sex ratio biases appear adaptive because sons of male-like females and daughters of female-like males had above-average survival. This demonstrates that selection exerted against individuals displaying a trait that is typical of the other sex promoted the evolution of specific life history strategies that enhance their fitness. This may explain why in many organisms sexual dimorphism is often not complete.
Resumo:
Sexual reproduction is a fundamental aspect of life. Sex-determination mechanisms are responsible for the sexual fate and development of sexual characteristics in an organism, be it a unicellular alga, a plant, or an animal. Surprisingly, sex-determination mechanisms are not evolutionarily conserved but are bewilderingly diverse and appear to have had rapid turnover rates during evolution. Evolutionary biologists continue to seek a solution to this conundrum. What drives the surprising dynamics of such a fundamental process that always leads to the same outcome: two sex types, male and female? The answer is complex but the ongoing genomic revolution has already greatly increased our knowledge of sex-determination systems and sex chromosomes in recent years. This novel book presents and synthesizes our current understanding, and clearly shows that sex-determination evolution will remain a dynamic field of future research. The Evolution of Sex Determination is an advanced, research level text suitable for graduate students and researchers in genetics, developmental biology, and evolution.
Resumo:
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.
Resumo:
A new study in Caenorhabditis elegans shows that homologous autosomes segregate non-randomly with the sex chromosome in the heterogametic sex. Segregation occurs according to size, small autosomes segregating with, and large autosomes segregating away from the X-chromosome. Such sex-biased transmission of autosomes could facilitate the spread of sexually antagonistic alleles whose effects favor the fitness of one sex at the expense of the other. This may provide a first step toward the evolution of new sex determination systems.
Resumo:
Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.
Resumo:
Sex determination can be purely genetic (as in mammals and birds), purely environmental (as in many reptiles), or genetic but reversible by environmental factors during a sensitive period in life, as in many fish and amphibians (Wallace et al. 1999; Baroiller et al. 2009a; Stelkens & Wedekind 2010). Such environmental sex reversal (ESR) can be induced, for example, by temperature changes or by exposure to hormone-active substances. ESR has long been recognized as a means to produce more profitable single-sex cultures in fish farms (Cnaani & Levavi-Sivan 2009), but we know very little about its prevalence in the wild. Obviously, induced feminization or masculinization may immediately distort population sex ratios, and distorted sex ratios are indeed reported from some amphibian and fish populations (Olsen et al. 2006; Alho et al. 2008; Brykov et al. 2008). However, sex ratios can also be skewed by, for example, segregation distorters or sex-specific mortality. Demonstrating ESR in the wild therefore requires the identification of sex-linked genetic markers (in the absence of heteromorphic sex chromosomes) followed by comparison of genotypes and phenotypes, or experimental crosses with individuals who seem sex reversed, followed by sexing of offspring after rearing under non-ESR conditions and at low mortality. In this issue, Alho et al. (2010) investigate the role of ESR in the common frog (Rana temporaria) and a population that has a distorted adult sex ratio. They developed new sex-linked microsatellite markers and tested wild-caught male and female adults for potential mismatches between phenotype and genotype. They found a significant proportion of phenotypic males with a female genotype. This suggests environmental masculinization, here with a prevalence of 9%. The authors then tested whether XX males naturally reproduce with XX females. They collected egg clutches and found that some had indeed a primary sex ratio of 100% daughters. Other clutches seemed to result from multi-male fertilizations of which at least one male had the female genotype. These results suggest that sex-reversed individuals affect the sex ratio in the following generation. But how relevant is ESR if its prevalence is rather low, and what are the implications of successful reproduction of sex-reversed individuals in the wild?
Resumo:
Background: The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X 1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X 2X2♀ sex chromosome systems. Results: Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C 0 t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions: These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. © 2013Palacios-Gimenez et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biological speciation ultimately results in prezygotic isolation—the inability of incipient species to mate with one another–but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collection has allowed us to analyze the evolution of two sex-related genes: the mid gene of C. reinhardtii, which determines whether a gamete is mating-type plus or minus, and the fus1 gene, which dictates a cell surface glycoprotein utilized by C. reinhardtii plus gametes to recognize minus gametes. Low stringency Southern analyses failed to detect any fus1 homologs in other Chlamydomonas species and detected only one mid homolog, documenting that both genes have diverged extensively during the evolution of the lineage. The one mid homolog was found in C. incerta, the species in culture that is most closely related to C. reinhardtii. Its mid gene carries numerous nonsynonymous and synonymous codon changes compared with the C. reinhardtii mid gene. In contrast, very high sequence conservation of both the mid and fus1 sequences is found in natural isolates of C. reinhardtii, indicating that the genes are not free to drift within a species but do diverge dramatically between species. Striking divergence of sex determination and mate recognition genes also has been encountered in a number of other eukaryotic phyla, suggesting that unique, and as yet unidentified, selection pressures act on these classes of genes during the speciation process.
Resumo:
Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy (e.g. mammals' X, birds' Z) and a degenerated copy (mammals' Y, birds' W), implying that sex- chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and temporal framework. By reconstructing the recent evolutionary history of the widespread European tree frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying genes with key role in animal sex determination, and which probably specialized through frequent reuse as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of cold-blooded vertebrates' sex-determining systems, and provides insights into the evolution of recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, phylogeography and applied conservation research. -- La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé génétiquement au sein du règne animal. L'incroyable diversité des systèmes de reproduction et des chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels d'autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en utilisant les rainettes Paléarctiques du genre Hyla comme modèle d'étude. Nous avons adopté une approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de différenciation et de transitions de chromosomes sexuels dans un contexte spatio-temporel. En retraçant l'histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que ce processus avait le potentiel d'évoluer très rapidement. A l'échelle plus globale de la radiation, il apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 derniers millions d'années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une paire de chromosomes qui présente des caractéristiques présageant d'une spécialisation dans le déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été réutilisée plusieurs fois comme tel chez les rainettes ainsi que d'autres amphibiens. Enfin, nous avons étudié l'hybridation entre différentes espèces dans leurs zones de contact, afin d'évaluer si l'absence de différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt pour la compréhension de l'évolution des chromosomes sexuels, ce travail contribue de manière significative à d'autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la biologie de la conservation.
Resumo:
The genus Eigenmannia comprises several species groups that display a surprising variety of diploid chromosome numbers and sex-determining systems. In this study, hypotheses regarding phylogenetic relationships and karyotype evolution were investigated using a combination of molecular and cytogenetic methods. Phylogenetic relationships were analyzed for 11 cytotypes based on sequences from five mitochondrial DNA regions. Parsimony-based character mapping of sex chromosomes confirms previous suggestions of multiple origins of sex chromosomes. Molecular cytogenetic analyses involved chromosome painting using probes derived from whole sex chromosomes from two taxa that were hybridized to metaphases of their respective sister cytotypes. These analyses showed that a multiple XY system evolved recently (<7 mya) by fusion. Furthermore, one of the chromosomes that fused to form the neo-Y chromosome is fused independently to another chromosome in the sister cytotype. This may constitute an efficient post-mating barrier and might imply a direct function of sex chromosomes in the speciation processes in Eigenmannia. The other chromosomal sex-determination system investigated is shown to have differentiated by an accumulation of heterochromatin on the X chromosome. This has occurred in the past 0.6 my, and is the most recent chromosomal sex-determining system described to date. These results show that the evolution of sex-determining systems can proceed very rapidly. Heredity (2011) 106, 391-400; doi:10.1038/hdy.2010.82; published online 23 June 2010
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Resumo:
RÉSUMÉ : Le sexe des individus peut être déterminé par l'environnement ou la génétique. Lorsque la détermination du sexe est génétique, il y a dans le génome, la présence de chromosomes spécifiques qui détermineront le sexe. Dans cette thèse, j'ai étudié l'évolution des chromosomes sexuels et dans quel contexte des marqueurs sur ces chromosomes peuvent être utilisés. Pour explorer la formation du chromosome Y, nous avons étudié les caractéristiques des chromosomes sexuels chez la rainette verte, Hyla arborea. Dans un premier temps, nous avons utilisé un marqueur situé sur les chromosomes sexuels X et Y chez plusieurs espèces appartenant au groupe de la rainette verte. Cela nous a permis de révéler chez toutes ces espèces une hétérogamétie mâle. Dans un deuxième temps, nous avons tiré profit de deux autres marqueurs situés sur les chromosomes sexuels pour montrer que la recombinaison est supprimée chez les mâles mais pas chez les femelles. Pour expliquer la réduction de la variabilité sur le chromosome Y, il n'est pas nécessaire d'invoquer le balayage sélectif ou la sélection d'arrière-plan : le nombre de copies plus petit du chromosome Y dans le génome et l'absence de recombinaison suffisent à l'expliquer. Nous avons également analysé plus en détail la suppression de la recombinaison chez les mâles de H. arborea. Les modèles classiques de l'évolution des chromosomes sexuels supposent que la taille de la région non-recombinante augmente progressivement pendant l'évolution du chromosome Y, due à l'accumulation de changements structuraux. Dans cette étude, nous montrons un modèle différent, à savoir que la recombinaison est supprimée ou diminuée non seulement sur les chromosomes sexuels mais aussi sur les autosomes chez les mâles, dû à l'action de modificateurs généraux. En utilisant des marqueurs localisés sur le chromosome Y, ainsi que sur l'ADN mitochondrial et le chromosome X, nous avons étudié l'histoire évolutive de la musaraigne musette, Crocidura russula. Cette étude illustre que les analyses génétiques avec plusieurs types de marqueurs génétiques peuvent faciliter l'interprétation de l'histoire évolutive des espèces, mais que l'utilisation des marqueurs sur les chromosomes X et Y pour des études phylogéographiques est limitée par le peu de polymorphisme observé sur ces deux types de marqueurs. Le même jeu de données combiné avec des simulations a été employé pour comprendre les facteurs responsables de la faible variabilité sur le chromosome Y qui peut être expliqué, dans notre étude, par la démographie et les traits d'histoire de vie de C. russula. SUMMARY The sex of an individual is determined either by its environment or its genetics. Genetic sex determination relies on the presence of specific chromosomes that will determine the sex of their bearer. In this thesis, I studied the evolution of the sex chromosomes and the context in which markers on this type of chromosomes can be used. To explore the evolution of a Y chromosome, we studied the nascent sex chromosomes in the European tree frog Hyla arborea. First; we amplified a sex specific marker in several related species of European tree frog and found a homogeneous pattern of male heterogamety. Secondly, we used two additional sex-specific markers to show that recombination is suppressed in males but not in females. There is, therefore, no need to invoke background selection or selective sweeps to explain the reduced genetic variability on the Y chromosome, because the lower number of copies of the Y chromosomes per breeding pair and the absence of recombination are sufficient. To further analyze the suppression of recombination in male European. tree frogs, we constructed a microsatellite linkage map for this species. Classical models of sex-chromosome evolution assume that the non-recombining region expands progressively during the long-term evolution of the Y chromosome, owing to the accumulation of structural changes. Here we show a strikingly different pattern: recombination is suppressed or depressed both on sex chromosomes and autosomes in the heterogametic sex, presumably due to the action of general modifiers. We investigated the evolutionary history of the greater white-toothed shrew, Crocidura russula, using markers on both sex chromosomes and mtDNA. This study illustrates that multilocus genetic analyses facilitates the interpretation of a species' evolutionary history. It also demonstrates that phylogeographic inferences from X and Y chromosomal markers are restricted by the low levels of observed polymorphism. Combining this genetic study with simulations, we determined that the demography and the life-history traits of this species can alone be responsible for the low Y diversity. In conclusion, this thesis shows that sex chromosomes, in combination with autosomes or mtDNA, are necessary to understand the evolution of sex chromosomes and to precisely infer the population history of a species.
Resumo:
A workshop on 'The evolution of sex determination systems' was held at a remote place in the Swiss Alps from 17 to 20 June 2009. It brought together theoreticians and empiricists, the latter ranging from molecular geneticists to evolutionary ecologists, all trying to understand key aspects of sex determination. The topics discussed included the evolutionary origins of sex determination, the diversity of sex determination mechanisms in different taxa, and the transition from genotypic to environmental sex determination and vice versa.