862 resultados para event log
Resumo:
This paper addresses the problem of identifying and explaining behavioral differences between two business process event logs. The paper presents a method that, given two event logs, returns a set of statements in natural language capturing behavior that is present or frequent in one log, while absent or infrequent in the other. This log delta analysis method allows users to diagnose differences between normal and deviant executions of a process or between two versions or variants of a process. The method relies on a novel approach to losslessly encode an event log as an event structure, combined with a frequency-enhanced technique for differencing pairs of event structures. A validation of the proposed method shows that it accurately diagnoses typical change patterns and can explain differences between normal and deviant cases in a real-life log, more compactly and precisely than previously proposed methods.
Resumo:
Effective risk management is crucial for any organisation. One of its key steps is risk identification, but few tools exist to support this process. Here we present a method for the automatic discovery of a particular type of process-related risk, the danger of deadline transgressions or overruns, based on the analysis of event logs. We define a set of time-related process risk indicators, i.e., patterns observable in event logs that highlight the likelihood of an overrun, and then show how instances of these patterns can be identified automatically using statistical principles. To demonstrate its feasibility, the approach has been implemented as a plug-in module to the process mining framework ProM and tested using an event log from a Dutch financial institution.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from information system event logs. Within the process mining research area, two prominent tasks can be discerned. First of all, process discovery deals with the automatic construction of a process model out of an event log. Secondly, conformance checking focuses on the assessment of the quality of a discovered or designed process model in respect to the actual behavior as captured in event logs. Hereto, multiple techniques and metrics have been developed and described in the literature. However, the process mining domain still lacks a comprehensive framework for assessing the goodness of a process model from a quantitative perspective. In this study, we describe the architecture of an extensible framework within ProM, allowing for the consistent, comparative and repeatable calculation of conformance metrics. For the development and assessment of both process discovery as well as conformance techniques, such a framework is considered greatly valuable.
Resumo:
Business processes depend on human resources and managers must regularly evaluate the performance of their employees based on a number of measures, some of which are subjective in nature. As modern organisations use information systems to automate their business processes and record information about processes’ executions in event logs, it now becomes possible to get objective information about resource behaviours by analysing data recorded in event logs. We present an extensible framework for extracting knowledge from event logs about the behaviour of a human resource and for analysing the dynamics of this behaviour over time. The framework is fully automated and implements a predefined set of behavioural indicators for human resources. It also provides a means for organisations to define their own behavioural indicators, using the conventional Structured Query Language, and a means to analyse the dynamics of these indicators. The framework's applicability is demonstrated using an event log from a German bank.
Resumo:
Today’s information systems log vast amounts of data. These collections of data (implicitly) describe events (e.g. placing an order or taking a blood test) and, hence, provide information on the actual execution of business processes. The analysis of such data provides an excellent starting point for business process improvement. This is the realm of process mining, an area which has provided a repertoire of many analysis techniques. Despite the impressive capabilities of existing process mining algorithms, dealing with the abundance of data recorded by contemporary systems and devices remains a challenge. Of particular importance is the capability to guide the meaningful interpretation of “oceans of data” by process analysts. To this end, insights from the field of visual analytics can be leveraged. This article proposes an approach where process states are reconstructed from event logs and visualised in succession, leading to an animated history of a process. This approach is customisable in how a process state, partially defined through a collection of activity instances, is visualised: one can select a map and specify a projection of events on this map based on the properties of the events. This paper describes a comprehensive implementation of the proposal. It was realised using the open-source process mining framework ProM. Moreover, this paper also reports on an evaluation of the approach conducted with Suncorp, one of Australia’s largest insurance companies.
Resumo:
Human resources are often responsible for the execution of business processes. In order to evaluate resource performance and identify best practices as well as opportunities for improvement, managers need objective information about resource behaviours. Companies often use information systems to support their processes and these systems record information about process execution in event logs. We present a framework for analysing and evaluating resource behaviour through mining such event logs. The framework provides a method for extracting descriptive information about resource skills, utilisation, preferences, productivity and collaboration patterns; a method for analysing relationships between different resource behaviours and outcomes; and a method for evaluating the overall resource productivity, tracking its changes over time and comparing it with the productivity of other resources. To demonstrate the applicability of our framework we apply it to analyse behaviours of employees in an Australian company and evaluate its usefulness by a survey among managers in industry.
Resumo:
With organisations facing significant challenges to remain competitive, Business Process Improvement (BPI) initiatives are often conducted to improve the efficiency and effectiveness of their business processes, focussing on time, cost, and quality improvements. Event logs which contain a detailed record of business operations over a certain time period, recorded by an organisation's information systems, are the first step towards initiating evidence-based BPI activities. Given an (original) event log as a starting point, an approach to explore better ways to execute a business process was developed, resulting in an improved (perturbed) event log. Identifying the differences between the original event log and the perturbed event log can provide valuable insights, helping organisations to improve their processes. However, there is a lack of automated techniques to detect the differences between two event logs. Therefore, this research aims to develop visualisation techniques to provide targeted analysis of resource reallocation and activity rescheduling. The differences between two event logs are first identified. The changes between the two event logs are conceptualised and realised with a number of visualisations. With the proposed visualisations, analysts will then be able to identify the changes related to resource and time, resulting in a more efficient business process. Ultimately, analysts can make use of this comparative information to initiate evidence-based BPI activities.
Resumo:
Companies standardise and automate their business processes in order to improve process eff ciency and minimise operational risks. However, it is di fficult to eliminate all process risks during the process design stage due to the fact that processes often run in complex and changeable environments and rely on human resources. Timely identification of process risks is crucial in order to insure the achievement of process goals. Business processes are often supported by information systems that record information about their executions in event logs. In this article we present an approach and a supporting tool for the evaluation of the overall process risk and for the prediction of process outcomes based on the analysis of information recorded in event logs. It can help managers evaluate the overall risk exposure of their business processes, track the evolution of overall process risk, identify changes and predict process outcomes based on the current value of overall process risk. The approach was implemented and validated using synthetic event logs and through a case study with a real event log.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.
Resumo:
Organisations are constantly seeking efficiency improvements for their business processes in terms of time and cost. Management accounting enables reporting of detailed cost of operations for decision making purpose, although significant effort is required to gather accurate operational data. Business process management is concerned with systematically documenting, managing, automating, and optimising processes. Process mining gives valuable insight into processes through analysis of events recorded by an IT system in the form of an event log with the focus on efficient utilisation of time and resources, although its primary focus is not on cost implications. In this paper, we propose a framework to support management accounting decisions on cost control by automatically incorporating cost data with historical data from event logs for monitoring, predicting and reporting process-related costs. We also illustrate how accurate, relevant and timely management accounting style cost reports can be produced on demand by extending open-source process mining framework ProM.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.
Resumo:
This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.
Resumo:
Existing techniques for automated discovery of process models from event logs gen- erally produce flat process models. Thus, they fail to exploit the notion of subprocess as well as error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of hierarchical BPMN models con- taining interrupting and non-interrupting boundary events and activity markers. The technique employs functional and inclusion dependency discovery techniques in order to elicit a process-subprocess hierarchy from the event log. Given this hierarchy and the projected logs associated to each node in the hierarchy, parent process and subprocess models are then discovered using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. By employing approximate dependency discovery tech- niques, it is possible to filter out noise in the event log arising for example from data entry errors or missing events. A validation with one synthetic and two real-life logs shows that process models derived by the proposed technique are more accurate and less complex than those derived with flat process discovery techniques. Meanwhile, a validation on a family of synthetically generated logs shows that the technique is resilient to varying levels of noise.
Resumo:
This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.
Resumo:
This paper proposes the Clinical Pathway Analysis Method (CPAM) approach that enables the extraction of valuable organisational and medical information on past clinical pathway executions from the event logs of healthcare information systems. The method deals with the complexity of real-world clinical pathways by introducing a perspective-based segmentation of the date-stamped event log. CPAM enables the clinical pathway analyst to effectively and efficiently acquire a profound insight into the clinical pathways. By comparing the specific medical conditions of patients with the factors used for characterising the different clinical pathway variants, the medical expert can identify the best therapeutic option. Process mining-based analytics enables the acquisition of valuable insights into clinical pathways, based on the complete audit traces of previous clinical pathway instances. Additionally, the methodology is suited to assess guideline compliance and analyse adverse events. Finally, the methodology provides support for eliciting tacit knowledge and providing treatment selection assistance.