995 resultados para eutrophic waters


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blue-green algae (cyanobacteria) have had a profound and unparalled impact on the aquatic environment because of the phenomenon of bloom formation. In many countries, water management is threatened with extensive and persistent noxious blooms of blue-green algae in surface and near-surface mesotrophic and eutrophic waters. In view of this, ecological and physiological factors responsible for blue-green algal dominance are discussed. The implications of cyanobacterial blooms are highlighted and recommendations made to combat this menace

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper reports mass occurrence of two algal species Ulva grandis Saifullah and Nizamuddin and Enteromorpha intestinalis (Linnaeus) Link in a protected coastal area in Jeddah, heavily polluted with domestic sewage. They seem to prefer low salinity eutrophic waters for their maximum growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m(-3)) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 mu m fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass. (C) 2008 Elsevier B.V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to investigate the allelopathic activities between 3 Potamogeton spp. (Potamogeton maackianus, Potamogeton malaianus and Potamogeton pectinatus) and the toxic cyanobacteria (Microcystis aeruginosa). All Potamogeton spp inhibited the growth of M. aeruginosa in both coexistence and exudates experiments. Inhibition of M. aeruginosa growth by plant exudates depended strongly on the biomass of P malaianus. Initial pH (6.5-9.8) did not influence the inhibitory effects of P. malaianus exudates. However, the M. aeruginosa inhibited the net photosynthesis and respiration of all three pondweed test spp.. The decreases in photosynthesis and respiration were probably caused by the toxic compounds released by M. aeruginosa, rather than its shading effects. The M. aeruginosa also decreased the nutrients (phosphorus and nitrogen) uptake rates of macrophytes. The absorption rates of phosphorus and nitrogen and net photosynthesis were decreased sharply. These results will help to restore submerged plants in eutrophic waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A laboratory toxic experiment was conducted to examine dose-dependent effects of extracted microcystins (MCs) on embryonic development, larval growth and histopathological changes of southern catfish (Silurus meridionalis). Fertilized eggs were incubated in solutions with four concentrations of MCs (0, 1, 10, 100 mu g MC-LReq l(-1)). Higher MCs retarded egg development (2-10 h delays) and larval growth, reduced hatching rate (up to 45%), and caused high malformation rate (up to 15%) and hepatocytes damage (characterized by disorganization of cell structure and a loss of adherence between hepatocytes, cellular degeneration with vacuolar hepatocytes and marginal nuclei, even hepatocellular necrosis). A 10 mu g MC-LReql(-1) is close to a high concentration in natural cyanobacterial blooms, suggesting a possible existence of such toxic effects in eutrophic waters. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The allelopathic interactions between Potamogeton maackianus and toxic cyanobacteria (Microcystis aeruginosa) were studied. P maackianus inhibited the growth of M. aeruginosa, both in a coexistence culture system and in exudates experimental culture system. M. aeruginosa also showed effects on the secondary metabolic biosynthesis and secreting behavior of P maackianus. The main lipophilic components of the hexane extracts and the exudates from the macrophyte were analyzed through GC-MS determination. The lipophilic components of the hexane extracts and the exudates from P. maackianus were influenced by M. aeruginosa or their released chemicals. Comparing the lipophilic constituents of the hexane extracts with those in the exudates, the results showed that weak polar compounds contained in the macrophytes can be secreted into the surrounding water. Many compounds, such as N-phenyl-2-naphthalenamine and isopropyl myristate, were detected both in the hexane extracts and the exudates. The changes of lipophilic components in the hexane extracts would be a response to the stress of toxic cyanobacteria or their released toxins. Those changes of exudates, especially the increased content of N-phenyl-2-naphthalenamine, might also be an induced defensive behavior mediated by the released toxins from M aeruginosa. The study results about reciprocal allelopathic responses between macrophytes and cyanobacteria can help in the management of eutrophic waters, and is also important information concerning strategies for recovering eutrophic waters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution and dynamics of microcystins in various organs of the phytoplanktivorous bighead carp were studied monthly in Lake Taihu, which is dominated by toxic cyanobacteria. There was a good agreement between LC-MS and HPLC-UV determinations. Average recoveries of spiked fish samples were 63% for MC-RR and 71% for MC-LR. The highest MC contents in intestine, liver, kidney and spleen were 85.67, 2.83, 1.70 and 1.57 mu g g(-1) DW, respectively. MCs were much higher in mid-gut walls (1.22 mu g g(-1) DW) than in hind- and fore-gut walls (0.31 and 0.18 mu g g(-1) DW, respectively), suggesting the importance of mid-gut wall as major site for MC absorption. A cysteine conjugate of MC-LR was detected frequently in kidney. Among the muscle samples analyzed, 25% were above the provisional tolerable daily intake level by WHO. Bighead is strongly resistant to microcystins and can be used as biomanipulation fish to counteract cyanotoxin contamination in eutrophic waters. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 mug g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 mug g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 mug g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood > liver > muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secondary metabolites produced by water-blooming cyanobacteria in eutrophic waters include some potent hepatotoxins, These compounds also have tumour-promoting properties, attributable to their inhibition and activation of protein phosphatases and kinases respectively. The inhibitory effect of these toxins on protein phosphatases have been employed in a commonly used radiometric assay, involving the use of a P-32-labeled substrate, for the detection and quantitation of these compounds. This paper investigates and describes a colorimetric method in which the activity of protein phosphatase 2A is determined by measuring the rate of colour production from the release of yellow p-nitrophenol using p-nitrophenyl phosphate as the substrate. Results of this study suggest that the colorimetric protein phosphatase inhibition assay is a simple, inexpensive tool for screening substances that may have tumour-promoting characteristics in aquatic systems. The detection limit of the colorimetric method is comparable to the radiometric assay. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planktonic rotifers and cyclopoid copepods were studied in two reservoirs of different trophic states (eutrophic and oligo/mesoeutrophic) in the south of Brazil. During a year, monthly samplings were carried out in three stations in each reservoir. Species richness, frequency and abundance were used to find out useful and indicatives trends of water quality based on these organisms, reinforced by literature data. Species that showed higher differences between reservoirs were chosen. For Rotifera, richness, frequency and abundance of Brachionus were higher in the eutrophic reservoir, but Plationus patulus occurred only in the oligo/mesotrophic reservoir. For copepods, Tropocyclops prasinus dominated in the eutrophic reservoir, but Thermocyclops decipiens, T. minutus, T. inversus and Microcyclops anceps were dominants in the oligo/mesotrophic reservoir. In the canonical correspondence analysis, these species were indicators of the trophic state and were related with chlorophyll-a, total phytoplankton and total phosphorus. The use of these species can be efficient in the studied regions (subtropical/temperate), but comparing with other Brazilian reservoirs of tropical climate, the results could be different. Despite the dominance of T. decipiens over T. minutus, T. inversus has been widely used in Brazil as an indicator of eutrophic waters; in those cases of excessive eutrophication, other species, more rustic, commonly dominate. In the present study, Thermocyclops was dominant in the oligo/mesotrophic reservoir. The dominance of Brachionus for rotifers and Tropocyclops prasinus and Acanthocyclops robustus for copepods were indicative of eutrophic conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particles of detritus were counted by size-groups and microplankton cells in samples stained with acid fuchsin and acridine orange. Data were obtained for eutrophic and oligotrophic waters. Seston in the eutrophic layer of eutrophic waters consists of 22-65% phytoplankton, 3-18% microzooplankton, and 32-65% detritus; in oligotrophic waters - of 3-7% phytoplankton, 1-5% microzooplankton, and 92-97% detritus. Amount of detritus in seston increases with depth up to 4.4 µg C/l (sigma = 1.48) at 500-4000 m. Microplankton biomass in deep water contains mostly olive-green cells and bacteria; no microzooplankton <200 µm long was found below 200 m. Aggregates 10-50 µm in diameter and fragments of organisms 50-200 µm long were dominant by weight among detrital particles. No discernible associations of microorganisms with detrital particles were observed.