928 resultados para ethylene response factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grape berry is considered a non climacteric fruit, but there are some evidences that ethylene plays a role in the control of berry ripening. This PhD thesis aimed to give insights in the role of ethylene and ethylene-related genes in the regulation of grape berry ripening. During this study a small increase in ethylene concentration one week before véraison has been measured in Vitis vinifera L. ‘Pinot Noir’ grapes confirming previous findings in ‘Cabernet Sauvignon’. In addition, ethylene-related genes have been identified in the grapevine genome sequence. Similarly to other species, biosynthesis and ethylene receptor genes are present in grapevine as multi-gene families and their expression appeared tissue or developmental specific. All the other elements of the ethylene signal transduction cascade were also identified in the grape genome. Among them, there were ethylene response factors (ERF) which modulate the transcription of many effector genes in response to ethylene. In this study seven grapevine ERFs have been characterized and they showed tissue and berry development specific expression profiles. Two sequences, VvERF045 and VvERF063, seemed likely involved in berry ripening control due to their expression profiles and their sequence annotation. VvERF045 was induced before véraison and was specific of the ripe berry, by sequence similarity it was likely a transcription activator. VvERF063 displayed high sequence similarity to repressors of transcription and its expression, very high in green berries, was lowest at véraison and during ripening. To functionally characterize VvERF045 and VvERF063, a stable transformation strategy was chosen. Both sequences were cloned in vectors for over-expression and silencing and transferred in grape by Agrobacterium-mediated or biolistic-mediated gene transfer. In vitro, transgenic VvERF045 over-expressing plants displayed an epinastic phenotype whose extent was correlated to the transgene expression level. Four pathogen stress response genes were significantly induced in the transgenic plants, suggesting a putative function of VvERF045 in biotic stress defense during berry ripening. Further molecular analysis on the transgenic plants will help in identifying the actual VvERF045 target genes and together with the phenotypic characterization of the adult transgenic plants, will allow to extensively define the role of VvERF045 in berry ripening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DELLA proteins are the master negative regulators in gibberellin (GA) signaling acting in the nucleus as transcriptional regulators. The current view of DELLA action indicates that their activity relies on the physical interaction with transcription factors (TFs). Therefore, the identification of TFs through which DELLAs regulate GA responses is key to understanding these responses from a mechanistic point of view. Here, we have determined the TF interactome of the Arabidopsis (Arabidopsis thaliana) DELLA protein GIBBERELLIN INSENSITIVE and screened a collection of conditional TF overexpressors in search of those that alter GA sensitivity. As a result, we have found RELATED TO APETALA2.3, an ethylene-induced TF belonging to the group VII ETHYLENE RESPONSE FACTOR of the APETALA2/ethylene responsive element binding protein superfamily, as a DELLA interactor with physiological relevance in the context of apical hook development. The combination of transactivation assays and chromatin immunoprecipitation indicates that the interaction with GIBBERELLIN INSENSITIVE impairs the activity of RELATED TO APETALA2.3 on the target promoters. This mechanism represents a unique node in the cross regulation between the GA and ethylene signaling pathways controlling differential growth during apical hook development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction pathways that mediate activation of serum response factor (SRF) by heterotrimeric G protein α subunits were characterized in transfection systems. Gαq, Gα12, and Gα13, but not Gαi, activate SRF through RhoA. When Gαq, α12, or α13 were coexpressed with a Rho-specific guanine nucleotide exchange factor GEF115, Gα13, but not Gαq or Gα12, showed synergistic activation of SRF with GEF115. The synergy between Gα13 and GEF115 depends on the N-terminal part of GEF115, and there was no synergistic effect between Gα13 and another Rho-specific exchange factor Lbc. In addition, the Dbl-homology (DH)-domain-deletion mutant of GEF115 inhibited Gα13- and Gα12-induced, but not GEF115 itself- or Gαq-induced, SRF activation. The DH-domain-deletion mutant also suppressed thrombin- and lysophosphatidic acid-induced SRF activation in NIH 3T3 cells, probably by inhibition of Gα12/13. The N-terminal part of GEF115 contains a sequence motif that is homologous to the regulator of G protein signaling (RGS) domain of RGS12. RGS12 can inhibit both Gα12 and Gα13. Thus, the inhibition of Gα12/13 by the DH-deletion mutant may be due to the RGS activity of the mutant. The synergism between Gα13 and GEF115 indicates that GEF115 mediates Gα13-induced activation of Rho and SRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MyoD and Myf5 belong to the family of basic helix-loop-helix transcription factors that are key operators in skeletal muscle differentiation. MyoD and Myf5 genes are selectively activated during development in a time and region-specific manner and in response to different stimuli. However, molecules that specifically regulate the expression of these two genes and the pathways involved remain to be determined. We have recently shown that the serum response factor (SRF), a transcription factor involved in activation of both mitogenic response and muscle differentiation, is required for MyoD gene expression. We have investigated here whether SRF is also involved in the control of Myf5 gene expression, and the potential role of upstream regulators of SRF activity, the Rho family G-proteins including Rho, Rac, and CDC42, in the regulation of MyoD and Myf5. We show that inactivation of SRF does not alter Myf5 gene expression, whereas it causes a rapid extinction of MyoD gene expression. Furthermore, we show that RhoA, but not Rac or CDC42, is also required for the expression of MyoD. Indeed, blocking the activity of G-proteins using the general inhibitor lovastatin, or more specific antagonists of Rho proteins such as C3-transferase or dominant negative RhoA protein, resulted in a dramatic decrease of MyoD protein levels and promoter activity without any effects on Myf5 expression. We further show that RhoA-dependent transcriptional activation required functional SRF in C2 muscle cells. These data illustrate that MyoD and Myf5 are regulated by different upstream activation pathways in which MyoD expression is specifically modulated by a RhoA/SRF signaling cascade. In addition, our results establish the first link between RhoA protein activity and the expression of a key muscle regulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 26107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dass Pflanzen gegen phytopathogene Infektionen resistent sind, ist das Ergebnis von multip-len Abwehrreaktionen. Eine solche ist auch die Hypersensitivitätsreaktion (HR). Sie ist die Folge eines Befalls von Börner mit Rebläusen und zeigt sich an Blättern und Wurzeln der resistenten Unterlagsrebe in Form von lokalen Nekrosen. Die Erzeugung von neuen, trans-genen reblausresistenten Unterlagsreben verlangt präzise Kenntnisse über die Mechanismen der Reblausresistenz. Um Resistenzgene zu identifizieren, wurden im Rahmen dieser Arbeit differenzielle Genexpressionsanalysen eingesetzt. Diese waren die Microarray Analyse mit der Geniom one Technik und die real time (RT) -PCR. Sie erlaubten eine Gegenüberstellung der Genexpression in behandeltem Wurzelgewebe mit der Expression im Normalgewebe der Unterlagsrebe Börner. Als experimenteller Induktor der HR in Börner diente die Indol-3-Essigsäure (IES), ein Bestandteil des Reblausspeichels. Frühere Untersuchungen zur Reb-lausresistenz zeigten, dass bei einer Behandlung mit IAA an Wurzeln von Börner Nekrosen entstehen, nicht jedoch an Wurzeln von der reblaustoleranten Unterlagssorte SO4 oder dem reblausanfälligem Edelreis. Das war der Grund, SO4 und Riesling als Vergleichsobjekte zu Börner für diese Studie auszuwählen. So sollte die Bedeutung der Rolle von IES als Auslö-ser der Resistenzmechanismen in Börner erklärt werden. Insgesamt konnten deutliche Unter-schiede in den Reaktionen der drei Rebsorten auf die IES Behandlung aufgedeckt werden. Während in Börner eine hohe Anzahl an Genen und diese intensiv auf den IES Reiz reagiert, fallen die Gene bei SO4 und Riesling zahlenmäßig kaum ins Gewicht und die Reaktionen der beiden Sorten auf IES zudem eher schwach aus. In der Summe waren es 27 Gene, die für die Reblausresistenz in Börner verantwortlich sein könnten. So konnte eine IES bedingte Aktivierung von Genen beobachtet werden, die bei der Produktion von Phytoalexinen be-deutsam sind, wie z.B. die phenylalanine ammonia-lyase, die lipoxygenase und die stilbene synthase. Weiter ließ sich eine Regulation von allgemein Stress assoziierten Genen und von Zellwandproteinen und eine Induktion von Signalkomponenten, etwa des Transkriptionsfak-tors ethylene response factor, nachweisen. Eine deutliche Hochregulation von Au-xintransportern in den IES behandelten Börnerwurzeln gab zudem Anhaltspunkte auf sorten-spezifische Unterschiede in der zellulären Aufnahme und Abgabe der IES. Durch die Ausar-beitung des Zusammenspiels der durch IES regulierten Gene konnten in dieser Arbeit wert-volle Hinweise auf die Mechanismen der Reblausresistenz in Börner gewonnen werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the beta-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings.