979 resultados para estrogen synthesize
Resumo:
雌激素是人体内重要的激素之一,具有广泛的生理功能。雌激素缺乏与许多疾病相关,如卵巢功能低下,更年期综合征以及骨质疏松等;雌激素过剩也将导致某些疾病,如乳腺癌、卵巢癌、子宫内膜癌等。目前,如何降低肿瘤组织中的雌激素水平而达到治疗肿瘤的目的,已经得到广泛的研究,但促雌激素生成或调节卵巢功能药物或其相关研究则很少。 本实验室前期的研究发现,瓦山安息香属植物果实中的乙醇提取物具有促雌激素生成作用,通过活性追踪和结构鉴定,确认促E2 生成的主要成分为苯并呋喃类化合物。苯并呋喃类化合物的作用与芳香酶有关,但其确切的作用机理有待证实和深入研究。 为了探讨安息香苯并呋喃类化合物的促雌激素合成的作用机理,拟采用如下的实验方案: 1、细胞学方面,对小鼠3T3-L1 前脂肪细胞、人乳腺癌细胞MCF-7、MDA-MB-231 以及人卵巢癌细胞OVCAR-3、OVCAR-4、OVCAR-5、OVCAR-8、IGROV1 等细胞株,采用RT-PCR 和ELISA 方法研究芳香酶Aro基因的表达和雌二醇E2 的生成,芳香酶抑制剂Formestane 作为阳性对照,研究时效曲线和量效曲线,确定安息香苯并呋喃类化合物SP25 的有效浓度和作用时间。 2、RNAi 方面,设计合成了针对人芳香酶Aro基因的3 对RNAi 序列,转染入细胞,芳香酶促进剂Forskolin 和地塞米松、芳香酶抑制剂Formestane 作为阳性对照,采用实时定量PCR 技术,研究RNA 干扰后,安息香苯并呋喃类化合物SP25 对人芳香酶Aro基因表达水平瓦山安息香苯并呋喃促雌激素合成的机理研究的影响。 3、雌激素受体方面,设计一段ERE 的雌激素调控元件,构建重组荧光素酶报告基因载体,瞬时转染人乳腺癌细胞株MDA-MB-231,建立针对雌激素受体的报告基因筛选模型,观察安息香苯并呋喃类化合物SP25 对雌激素受体的选择性和亲和力,从受体水平考察安息香苯并呋喃类化合物SP25 促进雌激素生成的药理学机理。 实验结果显示: 1、分化后的小鼠3T3-L1 前脂肪细胞、人乳腺癌细胞MCF-7 、MDA-MB-231 以及人卵巢癌细胞OVCAR-3、OVCAR-4、OVCAR-8 等细胞株具有芳香酶基因的表达。睾酮向雌二醇的转化能够被芳香酶抑制剂Formestane 所阻断,其中OVCAR-3 最适合进行下一步的RNAi研究。 2、RNAi 实验结果显示,设计的3 对RNAi 序列中R2 的干扰效果最强,相应的阴性对照C2 与R2 的表达量相差118 倍(24 小时)和19 倍(48 小时),显示R2/C2 这组序列可用于进一步的RNAi 试验。以R2 干扰OVCAR-3 细胞株,药物作用24、48 小时后,芳香酶抑制剂Formestane 与R2 相对表达量相比分别为0.83 倍和0.04 倍;芳香酶促进剂Forskolin 与R2 相对表达量相比分别为3.61 和1.84 倍;芳香酶促进剂地塞米松与R2 相对表达量相比分别为5.76 倍和3.49倍;苯并呋喃类化合物SP25 与R2 相对表达量相比分别为8.13 倍和4.59 倍。实验证实安息香苯并呋喃类化合物SP25 能够促进因RNAi 而发生基因沉默的人芳香酶Aro表达水平的上调。 3、雌激素受体实验结果显示,构建成功重组pERE-pGL3-promoter 荧光素酶报告基因载体和基于报告基因系统的雌激素受体激动剂或拮抗剂的细胞筛选模型。实验结果表明安息香苯并呋喃类化合物SP25 与雌激素受体ERα和ERβ亲和力选择性之比约为3:1 ,SP25通过与雌激素受体ERα结合作用其受体,刺激芳香酶的表达。 本课题通过RNA 干扰、ELISA、荧光实时定量PCR、报告基因筛选模型等技术手段,从细胞水平、蛋白酶水平和基因表达水平、雌激素受体水平等方面系统地研究了从瓦山安息香属植物果实中提取的苯并呋喃SP25 促进促雌激素生成的机理研究。试验结果显示苯并呋喃类化合物SP25 促雌激素生成的主要作用机制是直接促进芳香酶基因表达水平,以及与雌激素受体a 结合,刺激芳香酶活性。 Estrogen is an important hormone that has versatile physiologicalfunctions. Lack of estrogen will lead to many diseases such as lower ovarianfunction, climacteric syndrome and osteoporosis. Excessive estrogen alsoinduces breast carcinoma, oophoroma and endometrial carcinoma and otherdiseases. To depress the estrogen level in tumor tissue to cure carcinomawas widely studied, but there is only few studies reported on the induction ofestrogen and on the regulation of ovary function. We found that the extracts from seeds of Styrax perkinsiae couldpromote the synthesis of estrogen. The active compounds benzofurans wereidentified. Effect of benzofurans may be related to aromatase, but the mechanism was not clear. To reveal the mechanism of these benzofurans to promote estrogensynthesis, the following protocols were adopted: 1 Cytology: 3T3-L1 preadipocytes,human ovary carcinoma celllines OVCAR-3,OVCAR-4,OVCAR-5,OVCAR-8,IGROV1 andbreast carcinoma cell lines MCF-7 and MDA-MB-231 were usedto determine Aro gene expression and estrogen production withRT-PCR AND ELISA methods. Formestane, an aromataseinhibitor, was used as positive control. And dose-curve,time-curve and the effective concentration of SP25 were also studied. 2 Designed 3 pairs of RNAi for human aromatase gene, andtransfected into cell. Aromatase inducer Forskolin andDexamethasone, and aromatase inhibitor Formestane were usedas positive controls. We studied the change of Aro expressionlevel with SP25 by using real-time PCR after RNA interfering. 3 Estrogen Receptor: We constructed the recombined Luciferasereport vector and establish a screening system for estrogenagonist and antagon. With this system, we studied the affinity ofSP25 and estrogen receptor. Results: 1 Differentiated 3T3-L1 preadipocytes¡¢human ovary carcinomacell lines:OVCAR-3, OVCAR-4, OVCAR-8 and breast carcinomacell lines MCF-7, MDA-MB-231 had detected aromatase geneexpression.And OVCAR-3 is more suitable for further aromatasegene function research. 2 In RNAi assay, R2 has a strong interfering effcet in OVCAR-3 cellline, and ratio of C2 (the negative control) to R2 were 118 times(24 hours) and 19 times (48 hours). This means sucessful inRNA interfering. After R2 acted on OVCAR-3 cell line, the ratiosof formestane to R2 were 0.83 and 0.04 times, 5.76 and 3.49times (Dex), 3.61 and 1.84 times (forskolin) and 8.13 and 4.59times (sp25) after drug treated 24 or 48 hours respectively.These results indicated that SP25 can directly induce aromatasegene up-regulation. 3 We had constructed pERE-pGL3-promoter recombined vectorand the Luciferase report gene screening system. Luciferasereport gene assay showed that sp25 had a higher affinity with strogen receptor alpha than estrogen receptor beta, this indicated that SP25 can act on estrogen receptor and induce aromatase. Our results revealed that the mechanisms of benzofuran to promoteestrogen were the upregulation aromatase gene expression and promotion ofaromatase activity and have partially elective affinity with estrogen receptoralpha.
Resumo:
Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.
Resumo:
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor–β (ERβ) in BPH and PCa. ERβ agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFα knock-out mice fail to respond to ERβ agonist, demonstrating the requirement for TNFα signaling. In human tissues, ERβ agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133+ enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERβ causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERβ agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERβ agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Our laboratory has previously found that anti-mitogenic nuclear receptor mRNA is elevated in late stage tumours and this study was performed to scrutinize the possibility of cancer-stroma crosstalk using hormone signaling in these tissues. RNA levels in stromal tissue were examined for the estrogen α, estrogen β, androgen, progesterone and glucocorticoid nuclear receptors by a semi-quantitative PCR. Significant differences in expression between the cancer stroma and control tissue were seen, analyzing for both cancer grade and estrogen receptor status. Stroma and control tissue were significantly different for the progesterone and glucocorticoid nuclear receptors (p = 5.908 × 10−7 and 2.761 × 10−5, respectively). Glucocorticoid receptor also showed a significant increase to mRNA levels in the stroma of estrogen receptor negative tumours (p = 5.85 × 10−5). By contrast, the estrogen receptors α and β, those most closely associated with breast tissue growth, showed no significant change in mRNA (p = 0.372 and 0.655, respectively). Androgen receptor mRNA also remained unaffected (p = 0.174).
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.