828 resultados para estimation window.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes new methodologies for evaluating out-of-sample forecastingperformance that are robust to the choice of the estimation window size. The methodologies involve evaluating the predictive ability of forecasting models over a wide rangeof window sizes. We show that the tests proposed in the literature may lack the powerto detect predictive ability and might be subject to data snooping across differentwindow sizes if used repeatedly. An empirical application shows the usefulness of themethodologies for evaluating exchange rate models' forecasting ability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis discusses the basic problem of the modern portfolio theory about how to optimise the perfect allocation for an investment portfolio. The theory provides a solution for an efficient portfolio, which minimises the risk of the portfolio with respect to the expected return. A central feature for all the portfolios on the efficient frontier is that the investor needs to provide the expected return for each asset. Market anomalies are persistent patterns seen in the financial markets, which cannot be explained with the current asset pricing theory. The goal of this thesis is to study whether these anomalies can be observed among different asset classes. Finally, if persistent patterns are found, it is investigated whether the anomalies hold valuable information for determining the expected returns used in the portfolio optimization Market anomalies and investment strategies based on them are studied with a rolling estimation window, where the return for the following period is always based on historical information. This is also crucial when rebalancing the portfolio. The anomalies investigated within this thesis are value, momentum, reversal, and idiosyncratic volatility. The research data includes price series of country level stock indices, government bonds, currencies, and commodities. The modern portfolio theory and the views given by the anomalies are combined by utilising the Black-Litterman model. This makes it possible to optimise the portfolio so that investor’s views are taken into account. When constructing the portfolios, the goal is to maximise the Sharpe ratio. Significance of the results is studied by assessing if the strategy yields excess returns in a relation to those explained by the threefactormodel. The most outstanding finding is that anomaly based factors include valuable information to enhance efficient portfolio diversification. When the highest Sharpe ratios for each asset class are picked from the test factors and applied to the Black−Litterman model, the final portfolio results in superior riskreturn combination. The highest Sharpe ratios are provided by momentum strategy for stocks and long-term reversal for the rest of the asset classes. Additionally, a strategy based on the value effect was highly appealing, and it basically performs as well as the previously mentioned Sharpe strategy. When studying the anomalies, it is found, that 12-month momentum is the strongest effect, especially for stock indices. In addition, a high idiosyncratic volatility seems to be positively correlated with country indices on stocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho tem como objetivo estudar como os anúncios de alterações nos ratings de crédito afetam o valor de mercado das empresas brasileiras. Isso foi feito considerando as divulgações de rating pelo período de 3 anos para o universo de empresas que compõem o índice Bovespa de ações. A metodologia escolhida foi a de Estudo de Evento, utilizando o Market Model como forma de estimação dos retornos normais das ações para uma janela de estimação de 1 ano. Como resultado verificou-se que as divulgações dos ratings têm influência no preço das ações, sendo esse efeito mais acentuado no caso dos rebaixamentos de rating (downgrades): os investidores tendem a antecipar a divulgação do downgrade já que o preço das ações cai antes dessa data e volta a subir depois dela. Essa conclusão está em linha com a de estudos semelhantes feitos com ações europeias e americanas. Outra conclusão foi a de que separando a amostra de downgrades entre empresas investment grade e non-investment grade o efeito dos anúncios de rating é mais acentuado no segundo grupo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prior research has shown that loan loss provisions are primarily used as a tool for earnings management and capital management by listed banks. Effective 2005 all listed companies in the European Union (EU) are required to comply with International Financial Reporting Standards (IFRS). Adherence to IFRS, it is claimed, should enhance transparency of reporting practices relative to local General Accepted Accounting Principles (GAAP). The overall objective of this paper is to examine the impact of the implementation of IFRS on the use of loan loss provisions (LLPs) to manage earnings and capital. We use a sample of 91 EU listed commercial banks covering a period of 10 years (before and after implementation of IFRS). Since early adopters may have different incentives and motivations relative to those who adopt mandatorily, we dichotomize our sample into early and late adopters. Overall, we find that earnings management (using loan loss provisions) for both early and late adopters while significant over the estimation window is significantly reduced after implementation of IFRS. We also find that, for risky banks, earnings management behavior is more pronounced when compared to the less risky banks, but is significantly reduced in the post IFRS period. Capital management behavior by bank managers is not significant in both pre and post IFRS regimes. Overall, we conclude that the implementation of IFRS in the EU appears to have improved earnings quality by mitigating the tendency of bank managers of listed commercial banks to engage in earnings management using loan loss provisions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. METHODS: We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship 'Prevalence = Incidence x Duration' in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship 'incident = true incident + false incident' and also to the IIR derived from the BED incidence assay. RESULTS: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R(2) = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. CONCLUSIONS: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. Methods We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship ‘Prevalence = Incidence x Duration’ in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship ‘incident = true incident + false incident’ and also to the IIR derived from the BED incidence assay. Results Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R2 = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. Conclusions IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.