834 resultados para estimation weights


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the influence of a secondary variable as a function of the correlation with the primary variable for collocated cokriging is examined. For this study five exhaustive data sets were generated in computer, from which samples with 60 and 104 data points were drawn using the stratified random sampling method. These exhaustive data sets were generated departing from a pair of primary and secondary variables showing a good correlation. Then successive sets were generated by adding an amount of white noise in such a way that the correlation gets poorer. Using these samples, it was possible to find out how primary and secondary information is used to estimate an unsampled location according to the correlation level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: (i) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. (ii) The inclusion probabilities must be: (a) knowable for nonsampled units and (b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne Very High Resolution (VHR) images, where: (I) an original Categorical Variable Pair Similarity Index (CVPSI, proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and (II) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic MapperT (SIAMT) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAMT by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAMT pre-classification maps proposed in this contribution, together with OQIs claimed for SIAMT by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAMT software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems (GEOSS) initiative and the QA4EO international guidelines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Com este trabalho objetivou-se determinar parâmetros genéticos para peso corporal de perdizes em cativeiro. Foram utilizados modelos de regressão aleatória na análise dos dados considerando os efeitos genéticos aditivos diretos (AD) e de ambiente permanente de animal (AP) como aleatórios. As variâncias residuais foram modeladas utilizando-se funções de variância de ordem 5. A curva média da população foi ajustada por polinômios ortogonais de Legendre de ordem 6. Os efeitos genéticos aditivos diretos e de ambiente permanente de animal foram modelados utilizando-se polinômios de Legendre de segunda a nona ordem. Os melhores resultados foram obtidos pelos modelos de ordem 6 de ajuste para os efeitos genéticos aditivos diretos e de ordem 3 para os de ambiente permanente pelo Critério de Informação de Akaike e ordem 3 para ambos os efeitos pelos Critério de Informação Bayesiano de Schwartz e Teste de Razão de Verossimilhança. As herdabilidades estimadas variaram de 0,02 a 0,57. O primeiro autovalor respondeu por 94 e 90% da variação decorrente de efeitos aditivos diretos e de ambiente permanente, respectivamente. A seleção de perdizes para peso corporal é mais efetiva a partir de 112 dias de idade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Computed tomography (CT) and magnetic resonance imaging (MRI) are introduced as an alternative to traditional autopsy. The purpose of this study was to investigate their accuracy in mass estimation of liver and spleen. METHODS: In 44 cases, the weights of spleen and liver were estimated based on MRI and CT data using a volume-analysis software and a postmortem tissue-specific density factor. In a blinded approach, the results were compared with the weights noted at autopsy. RESULTS: Excellent correlation between estimated and real weights (r = 0.997 for MRI, r = 0.997 for CT) was found. Putrefaction gas and venous air embolism led to an overestimation. Venous congestion and drowning caused higher estimated weights. CONCLUSION: Postmortem weights of liver and spleen can accurately be assessed by nondestructive imaging. Multislice CT overcomes the limitation of putrefaction and venous air embolism by the possibility to exclude gas. Congestion seems to be even better assessed.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two methods were evaluated for scaling a set of semivariograms into a unified function for kriging estimation of field-measured properties. Scaling is performed using sample variances and sills of individual semivariograms as scale factors. Theoretical developments show that kriging weights are independent of the scaling factor which appears simply as a constant multiplying both sides of the kriging equations. The scaling techniques were applied to four sets of semivariograms representing spatial scales of 30 x 30 m to 600 x 900 km. Experimental semivariograms in each set successfully coalesced into a single curve by variances and sills of individual semivariograms. To evaluate the scaling techniques, kriged estimates derived from scaled semivariogram models were compared with those derived from unscaled models. Differences in kriged estimates of the order of 5% were found for the cases in which the scaling technique was not successful in coalescing the individual semivariograms, which also means that the spatial variability of these properties is different. The proposed scaling techniques enhance interpretation of semivariograms when a variety of measurements are made at the same location. They also reduce computational times for kriging estimations because kriging weights only need to be calculated for one variable. Weights remain unchanged for all other variables in the data set whose semivariograms are scaled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window estimate as the target function, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density estimates. The proposed algorithm incrementally minimises a leave-one-out test error score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights are finally updated using the multiplicative nonnegative quadratic programming algorithm, which has the ability to reduce the model size further. Except for the kernel width, the proposed algorithm has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Two examples are used to demonstrate the ability of this regression-based approach to effectively construct a sparse kernel density estimate with comparable accuracy to that of the full-sample optimised Parzen window density estimate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is incorporated into the density construction process to further enforce sparsity. The kernel weights of the selected sparse model are finally updated using the multiplicative nonnegative quadratic programming algorithm, which ensures the nonnegative and unity constraints for the kernel weights and has the desired ability to reduce the model size further. Except for the kernel width, the proposed method has no other parameters that need tuning, and the user is not required to specify any additional criterion to terminate the density construction procedure. Several examples demonstrate the ability of this simple regression-based approach to effectively construct a SKID estimate with comparable accuracy to that of the full-sample optimised PW density estimate. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.