959 resultados para estimate
Resumo:
Healthcare-associated methicillin-resistant Staphylococcus aureus(MRSA) infection may cause increased hospital stay or, sometimes, death. Quantifying this effect is complicated because it is a time-dependent exposure: infection may prolong hospital stay, while longer stays increase the risk of infection. We overcome these problems by using a multinomial longitudinal model for estimating the daily probability of death and discharge. We then extend the basic model to estimate how the effect of MRSA infection varies over time, and to quantify the number of excess ICU days due to infection. We find that infection decreases the relative risk of discharge (relative risk ratio = 0.68, 95% credible interval: 0.54, 0.82), but is only indirectly associated with increased mortality. An infection on the first day of admission resulted in a mean extra stay of 0.3 days (95% CI: 0.1, 0.5) for a patient with an APACHE II score of 10, and 1.2 days (95% CI: 0.5, 2.0) for a patient with an APACHE II score of 30. The decrease in the relative risk of discharge remained fairly constant with day of MRSA infection, but was slightly stronger closer to the start of infection. These results confirm the importance of MRSA infection in increasing ICU stay, but suggest that previous work may have systematically overestimated the effect size.
Resumo:
Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.
Resumo:
Determining sensitivity and specificity of a postoperative infection surveillance process is a difficult undertaking. Because postoperative infections are rare, vast numbers of negative results exist, and it is often not reasonable to assess them all. This study gives a methodological framework for estimating sensitivity and specificity by taking only a small sample of the number of patients who test negative and comparing their findings to the reference or “gold standard” rather than comparing the findings of all patients to the gold standard. It provides a formula for deriving confidence intervals for these estimates and a guide to minimum requirements for sampling results.
Resumo:
Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.
Resumo:
Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964–2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha−1 annum−1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970’s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0–30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.
Resumo:
Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.
Resumo:
In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.
Resumo:
An earlier study by the Asian Development Bank (ADB) showed that the annual cost of road traffic accidents in 2001 was S$699.36 million which was 0.5% of the annual GDP. This paper attempts to update of the cost estimates of road traffic accidents. More precise methods of computing the human cost, lost output and property damage are adopted which grew in an annual cost of S$610.3 million or 0.338% of the annual GDP in 2003. A more conservative estimate of S$878,000 for fatal accident is also obtained, compared to the earlier figure of S$1.4 million. This study has shown that it is necessary to update the annual traffic accident costs regularly, as the figures vary with the number of accidents which change with time.
Resumo:
This article presents a methodology that integrates cumulative plots with probe vehicle data for estimation of travel time statistics (average, quartile) on urban networks. The integration reduces relative deviation among the cumulative plots so that the classical analytical procedure of defining the area between the plots as the total travel time can be applied. For quartile estimation, a slicing technique is proposed. The methodology is validated with real data from Lucerne, Switzerland and it is concluded that the travel time estimates from the proposed methodology are statistically equivalent to the observed values.
Resumo:
Purpose. The purpose of this article was to present methods capable of estimating the size and shape of the human eye lens without resorting to phakometry or magnetic resonance imaging (MRI). Methods. Previously published biometry and phakometry data of 66 emmetropic eyes of 66 subjects (age range [18, 63] years, spherical equivalent range [−0.75, +0.75] D) were used to define multiple linear regressions for the radii of curvature and thickness of the lens, from which the lens refractive index could be derived. MRI biometry was also available for a subset of 30 subjects, from which regressions could be determined for the vertex radii of curvature, conic constants, equatorial diameter, volume, and surface area. All regressions were compared with the phakometry and MRI data; the radii of curvature regressions were also compared with a method proposed by Bennett and Royston et al. Results. The regressions were in good agreement with the original measurements. This was especially the case for the regressions of lens thickness, volume, and surface area, which each had an R2 > 0.6. The regression for the posterior radius of curvature had an R2 < 0.2, making this regression unreliable. For all other regressions we found 0.25 < R2 < 0.6. The Bennett-Royston method also produced a good estimation of the radii of curvature, provided its parameters were adjusted appropriately. Conclusions. The regressions presented in this article offer a valuable alternative in case no measured lens biometry values are available; however care must be taken for possible outliers.