978 resultados para essential drug
Resumo:
This audit of prescribing practices explores recent trends at Kitovu Hospital, Uganda. The average number of drugs prescribed per patient was 2.89 ± 0.11, of which 1.79±0.09 were generics and 0.69±0.06 antibiotics. No injections were prescribed. Patient essential drug knowledge was 100% while the adequacy of labelling was 0%. The number of drugs prescribed correlated positively with patient age, was greater for female patients, similar for doctors and clinical officers but greater in medical (3.30±0.15, n=50) than surgical (2.48±0.13, n=50) outpatient clinics. The mean consultation time was 6.56 min and 10.25 min per patient in medical and surgical outpatient clinics respectively. The patient essential knowledge indicators were greatly improved but only modest reduction in polypharmacy was evident compared to the Ugandan Pharmaceutical Sector national survey of 2002. Antibiotic prescription was high and generic prescribing was found to be low. Policy changes are required to enhance rational drug use in the health sector in Uganda.
Resumo:
A survey to determine the availability of 20 essential medicines for the diseases with highest prevalence in primary health care was conducted in the city of Araraquara. The presence and the price of these medicines in private sector pharmacies and drugstores of the city were recorded. Two forms, recommended by the WHO, were used in the survey, one for availability and the other for prices. The drugs most commonly available in pharmacies and drugstores were: propranolol (90.5%), captopril (96%) and ranitidine (96%), while the least available were ferrous sulfate (27%), beclomethasone (33.8%) and ibuprofen (41.9%). The drugs that showed the greatest variation among the prices charged were: propranolol (97.1%), hydrochlorothiazide (96.4%) and glibenclamide (95.0%), while the least variable were salbutamol (30.8%) and trimethoprim-sulfamethoxazole (30.2%). Generic drugs, which were half (10) of those assessed, had the lowest prices. The indicators of access, referring to the ability of patients to acquire drugs for the treatment of major diseases at the primary health care level, showed that no establishment stocked all 20 essential drugs and that wide variations existed in their prices, undermining their availability to drug users, whose only sources are pharmacies and drugstores. These data demonstrate the importance of the popular pharmacy to improve the access to medicines, by lowering the cost and increasing the availability of the items selected for the National List of Essential Drugs (RENAME).
Resumo:
Nhx1 est un antiport vacuolaire de Na+/H+ chez la levure Saccharomyces cerevisiae. Nhx1 joue un rôle important dans le maintien de l’homéostasie ionique du cytoplasme de la cellule. En effet, la mutation du gène NHX1 chez la levure nhx1Δ entraîne une perte de l’homéostasie cellulaire quand les cellules sont cultivées dans un milieu de faible osmolarité. Ce travail rapporte pour la première fois, et contrairement à la cellule parentale, que la mutation du gène NHX1 a pour effet une sensibilité du mutant nhx1Δ à une variété des drogues et des agents cationiques et anioniques lorsque les cellules sont cultivées dans un milieu riche. En outre, dans ces conditions de culture, aucune sensibilité n’a été observée chez le mutant nhx1Δ quand les cellules sont traitées avec différentes concentrations de sel. Nous avons aussi démontré que la sensibilité du mutant nhx1Δ aux différents agents ainsi que la sécrétion de l’enzyme carboxypeptidase Y observé chez ce mutant n’ont pas été restauré lorsque les cellules sont cultivées dans des milieux avec différents pH ou avec différentes concentrations de sel. Enfin, une analyse génétique a révélé que le mutant nhx1Δ montre un phénotype distinct d’autres mutants qui ont un défaut dans le trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi quand ces cellules sont traitées avec différents agents. Cette analyse prouve que la sensibilité de nhx1Δ aux différents agents n’est pas liée au trafic entre le compartiment pré-vacuolaire et l’appareil de Golgi.
Resumo:
Interest in chromosome 18 in essential hypertension comes from comparative mapping of rat blood pressure quantitative trait loci (QTL), familial orthostatic hypotensive syndrome studies, and essential hypertension pedigree linkage analyses indicating that a locus or loci on human chromosome 18 may play a role in hypertension development. To further investigate involvement of chromosome 18 in human essential hypertension, the present study utilized a linkage scan approach to genotype twelve microsatellite markers spanning human chromosome 18 in 177 Australian Caucasian hypertensive (HT) sibling pairs. Linkage analysis showed significant excess allele sharing of the D18S61 marker when analyzed with SPLINK (P=0.00012), ANALYZE (Sibpair) (P=0.0081), and also with MAPMAKER SIBS (P=0.0001). Similarly, the D18S59 marker also showed evidence for excess allele sharing when analyzed with SPLINK (P=0.016), ANALYZE (Sibpair) (P=0.0095), and with MAPMAKER SIBS (P = 0.014). The adenylate cyclase activating polypeptide 1 gene (ADCYAP1) is involved in vasodilation and has been co-localized to the D18S59 marker. Results testing a microsatellite marker in the 3′ untranslated region of ADCYAP1 in age and gender matched HT and normotensive (NT) individuals showed possible association with hypertension (P = 0.038; Monte Carlo P = 0.02), but not with obesity. The present study shows a chromosome 18 role in essential hypertension and indicates that the genomic region near the ADCYAP1 gene or perhaps the gene itself may be implicated. Further investigation is required to conclusively determine the extent to which ADCYAP1 polymorphisms are involved in essential hypertension. © 2003 Wiley-Liss, Inc.
Resumo:
Drug resistance continues to be a major barrier to the delivery of curative therapies in cancer. Historically, drug resistance has been associated with over-expression of drug transporters, changes in drug kinetics or amplification of drug targets. However, the emergence of resistance in patients treated with new-targeted therapies has provided new insight into the complexities underlying cancer drug resistance. Recent data now implicate intratumoural heterogeneity as a major driver of drug resistance. Single cell sequencing studies that identified multiple genetically distinct variants within human tumours clearly demonstrate the heterogeneous nature of human tumours. The major contributors to intratumoural heterogeneity are (i) genetic variation, (ii) stochastic processes, (iii) the microenvironment and (iv) cell and tissue plasticity. Each of these factors impacts on drug sensitivity. To deliver curative therapies to patients, modification of current therapeutic strategies to include methods that estimate intratumoural heterogeneity and plasticity will be essential.
Resumo:
This portrait of the global debate over patent law and access to essential medicines focuses on public health concerns about HIV/AIDS, malaria, tuberculosis, the SARS virus, influenza, and diseases of poverty. The essays explore the diplomatic negotiations and disputes in key international fora, such as the World Trade Organization, the World Health Organization and the World Intellectual Property Organization. Drawing upon international trade law, innovation policy, intellectual property law, health law, human rights and philosophy, the authors seek to canvass policy solutions which encourage and reward worthwhile pharmaceutical innovation while ensuring affordable access to advanced medicines. A number of creative policy options are critically assessed, including the development of a Health Impact Fund, prizes for medical innovation, the use of patent pools, open-source drug development and forms of 'creative capitalism'.
Resumo:
This article considers the significance of the first export of essential medicines under the WTO General Council Decision 2003. In July 2007, Rwanda became the first country to provide a notification under the WTO General Council Decision 2003 of its intent to import a fixed-dose, triple combination HIV/AIDS drug manufactured by the Canadian generic pharmaceuticalmanufacturer Apotex, Inc. In September 2007, Apotex was granted the first compulsory licence application under Canada's Access to Medicines Regime. This article considers the convoluted and protracted negotiations between the Government of Rwanda, Apotex and three patent holders, GlaxoSmithKline, Boehringer Ingleheim Canada and Shire BioChemical, Inc. It questions the efficiency of this process. This article considers the review of the Jean Chretien Pledge to Africa Act 2004 (Canada). It is critical of the refusal of the Conservative Government of Canada to make any amendments to the legislation to improve the cost-effective delivery of essential medicines. This article queries the proposed Hong Kong Amendment to the TRIPS Agreement 1994, given the concerns of the Africa Group. It is submitted that it is undesirable to codify the WTO General Council Decision 2003, given its failure to provide a speedy, efficient and cost-effective delivery of essential medicines.
Resumo:
Background Implementing effective AOD supports and treatments into our daily practice can occur via a range of strategies. While specialist treatments exclusively targeting pathways toward substance reduction are an option, it is often not within the scope of many psychologists working in generalist or tertiary mental health settings. Regardless of the perceived barriers for integrating AOD practice into our work, there are key principles and approaches that can be adopted to improve the outcomes for many clients. Aim Irrespective of the client’s perceived need to address AOD issues, significant substance use will impact on the development, prognosis and treatment of most mental health conditions. Embedding AOD practice across our clinical work requires an openness to consider evidence-based approaches for all levels of substance use. Method This presentation will outline a series of approaches that all practitioners can adopt, based on the principles of harm reduction and empowerment of client’s choice. An emphasis will be made toward outlining approaches that are consistent with best practice, easily accessible and do not require extensive resources to embed. Conclusion Applying effective AOD treatments as a standard treatment component is achievable for all practitioners and is essential for achieving better outcomes for a high proportion of the community accessing treatment from psychologists.
Resumo:
Introduction and Aims: Holiday periods are potentially a time for increased substance use as social events and private parties are more common. Data on community illicit drug consumption during holiday periods are limited. Besides existing methods for determining drug use, such as population surveys, one emerging method is to measure illicit drugs and/or their metabolites in wastewater samples. This study examined the change in consumption of cannabis, methamphetamine, cocaine and 3,4- methylenedioxymethamphetamine in three different types of areas (an inland semi-rural area, a coastal urban area and a vacation island) with respect to holiday times. Design and Methods: Samples were collected at the inlet of the major wastewater treatment plant in each area during a key annual holiday (i.e. the summer holiday including Christmas and New Year) and control period. Illicit drug residues in the daily composited samples were measured by liquid chromatography coupled with tandem mass spectrometry. Results: Drug use varied substantially among the three areas within each monitoring period as well as between the holiday and control period within each area. Use consistently increased and peaked over New Year particularly for cocaine and 3,4-methylenedioxymethamphetamine whereas cannabis and methamphetamine were relatively less subjected to holiday times in all the areas. Discussion and Conclusions: Wastewater sampling and analysis provides higher spatio-temporal resolution than national surveys and supplements drug epidemiology studies originating primary in metropolitan locations. Such data is essential for policy makers to plan potential intervention strategies associated with these illicit substances in regional areas and other settings besides urban areas in the future.
Resumo:
The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.
Resumo:
Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.
Resumo:
A recent controversy in the United States over drug pricing by Turing Pharmaceuticals AG has raised larger issues in respect of intellectual property, access to medicines, and the Trans-Pacific Partnership (TPP). In August 2015, Turing Pharmaceuticals AG – a private biopharmaceutical company with offices in New York, the United States, and Zug, Switzerland - acquired the exclusive marketing rights to Daraprim in the United States from Impax Laboratories Incorporated. Martin Shkreli, Turing’s Founder and Chief Executive Officer, maintained: “The acquisition of Daraprim and our toxoplasmosis research program are significant steps along Turing’s path of bringing novel medications to patients with serious disorders, some of whom often go undiagnosed and untreated.” He emphasised: “We intend to invest in the development of new drug candidates that we hope will yield an even better clinical profile, and also plan to launch an educational effort to help raise awareness and improve diagnosis for patients with toxoplasmosis.” In September 2015, there was much public controversy over the decision of Martin Shkreli to raise the price of a 62 year old drug, Daraprim, from $US13.50 to $US750 a pill. The drug is particularly useful in respect to the treatment and prevention of malaria, and in the treatment of infections in individuals with HIV/AIDS. Daraprim is listed on the World Health Organization’s (WHO) List of Essential Medicines. In the face of much criticism, Martin Shkreli has said that he will reduce the price of Daraprim. He observed: “We've agreed to lower the price on Daraprim to a point that is more affordable and is able to allow the company to make a profit, but a very small profit.” He maintained: “We think these changes will be welcomed.” However, he has been vague and ambiguous about the nature of the commitment. Notably, the lobby group, Pharmaceutical Research and Manufacturers of America (PhARMA), disassociated itself from the claims of Turing Pharmaceuticals. The group said: “PhRMA members have a long history of drug discovery and innovation that has led to increased longevity and improved lives for millions of patients.” The group noted: “Turing Pharmaceutical is not a member of PhRMA and we do not embrace either their recent actions or the conduct of their CEO.” The biotechnology peak body Biotechnology Industry Organization also sought to distance itself from Turing Pharmaceuticals. A hot topic: United States political debate about access to affordable medicines This controversy over Daraprim is unusual – given the age of drug concerned. Daraprim is not subject to patent protection. Nonetheless, there remains a monopoly in respect of the marketplace. Drug pricing is not an isolated problem. There have been many concerns about drug pricing – particularly in respect of essential medicines for HIV/AIDS, tuberculosis, and malaria. This recent controversy is part of a larger debate about access to affordable medicines. The dispute raises larger issues about healthcare, consumer rights, competition policy, and trade. The Daraprim controversy has provided impetus for law reform in the US. US Presidential Candidate Hillary Clinton commented: “Price gouging like this in this specialty drug market is outrageous.” In response to her comments, the Nasdaq Biotechnology Index fell sharply. Hillary Clinton has announced a prescription drug reform plan to protect consumers and promote innovation – while putting an end to profiteering. On her campaign site, she has emphasised that “affordable healthcare is a basic human right.” Her rival progressive candidate, Bernie Sanders, was also concerned about the price hike. He wrote a letter to Martin Shkreli, complaining about the price increase for the drug Daraprim. Sanders said: “The enormous, overnight price increase for Daraprim is just the latest in a long list of skyrocketing price increases for certain critical medications.” He has pushed for reforms to intellectual property to make medicines affordable. The TPP and intellectual property The Daraprim controversy and political debate raises further issues about the design of the TPP. The dispute highlights the dangers of extending the rights of pharmaceutical drug companies under intellectual property, investor-state dispute settlement, and drug administration. Recently, the civil society group Knowledge Ecology International published a leaked draft of the Intellectual Property Chapter of the TPP. Knowledge Ecology International Director, James Love, was concerned the text revealed that the US “continues to be the most aggressive supporter of expanded intellectual property rights for drug companies.” He was concerned that “the proposals contained in the TPP will harm consumers and in some cases block innovation.” James Love feared: “In countless ways, the Obama Administration has sought to expand and extend drug monopolies and raise drug prices.” He maintained: “The astonishing collection of proposals pandering to big drug companies make more difficult the task of ensuring access to drugs for the treatment of cancer and other diseases and conditions.” Love called for a different approach to intellectual property and trade: “Rather than focusing on more intellectual property rights for drug companies, and a death-inducing spiral of higher prices and access barriers, the trade agreement could seek new norms to expand the funding of medical research and development (R&D) as a public good, an area where the US has an admirable track record, such as the public funding of research at the National Institutes of Health (NIH) and other federal agencies.” In addition, there has been much concern about the Investment Chapter of the TPP. The investor-state dispute settlement regime would enable foreign investors to challenge government policy making, which affected their investments. In the context of healthcare, there is a worry that pharmaceutical drug companies will deploy their investor rights to challenge public health measures – such as, for instance, initiatives to curb drug pricing and profiteering. Such concerns are not merely theoretical. Eli Lilly has brought an investor action against the Canadian Government over the rejection of its drug patents under the investor-state dispute settlement regime of the North American Free Trade Agreement (NAFTA). The Health Annex to the TPP also raises worries that pharmaceutical drug companies will able to object to regulatory procedures in respect of healthcare. It is disappointing that the TPP – in the leaks that we have seen – has only limited recognition of the importance of access to essential medicines. There is a need to ensure that there are proper safeguards to provide access to essential medicines – particularly in respect of HIV/AIDs, malaria, and tuberculosis. Moreover, there must be protection against drug profiteering and price gouging in any trade agreement. There should be strong measures against the abuse of intellectual property rights. The dispute over Turing Pharmaceuticals AG and Daraprim is an important cautionary warning in respect of some of the dangers present in the secret negotiations in respect of the TPP. There is a need to preserve consumer rights, competition policy, and public health in trade negotiations over an agreement covering the Pacific Rim.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.
Resumo:
Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.