990 resultados para erosion strength
Resumo:
作为复杂的生态过程之一,土壤侵蚀常常被空间景观异质性影响。深入地研究土壤侵蚀与植被景观的相关性对以减少水土流失为目的的河流中上游生态恢复工作来说十分重要。本文利用遥感和GIS 技术,对岷江源头区的植被景观和土壤侵蚀动态(1974年~2002 年)进行分析,并从景观生态学的角度,系统地研究了整体植被景观和不同的植被景观类型的景观特征与土壤侵蚀量、侵蚀模数以及土壤侵蚀强度的相关性,得出的结论主要有以下几个方面:1. 从植被景观特征与土壤侵蚀量和土壤侵蚀模数的相关性的角度出发,森林能最大限度地控制土壤侵蚀,草地对土壤侵蚀的控制能力不及森林,而且能在一定程度上增加土壤侵蚀。灌丛与土壤侵蚀量和土壤侵蚀模数的关系则比较复杂,还需要进一步地研究。农用地与森林、灌丛、草地等植被类型不同,它的增加将会明显地增加产沙量。随着各景观类型(灌丛除外)分布的镶嵌性的增强,土壤侵蚀量和侵蚀模数会减少。2. 从植被景观特征与土壤侵蚀强度的相关性的角度出发,在景观水平上,植被景观的景观多样性指数、景观破碎度指数、景观形状指数和景观聚集度指数均与土壤侵蚀强度有明显的相关性。在较轻侵蚀强度的区域中的植被景观具有更丰富的多样性和更低的破碎程度,景观的组分和结构都更加复杂,景观斑块的形状也比较复杂。同时,植被景观的空间异质性也较强。3. 从不同景观类型对土壤侵蚀强度的控制能力大小看:针叶林> 落叶阔叶林>针阔混交林> 灌丛> 草地> 农用地。同时,对于除农用地以外的其他植被景观类型来说,增加其平均斑块面积和形状的复杂性会在一定程度上减少土壤侵蚀强度。而对于农用地来说,斑块形状的简单化以及分布形式的均匀镶嵌化则是减少土壤侵蚀强度的有效手段。 As a complex ecological process, soil erosion is affected by the spatial landscape heterogeneity.The relation between soil erosion and landscape characteristic weights a lot in ecosystemrestoration that aim to control the soil erosion in watershed. By means of RS and GIStechniques, this study analyzed dynamic variations in landscape characteristic and soil erosionin the Minjiang headwater region over a period of 28 years to elucidate the interrelationshipsbetween landscape characteristics and soil erosion. The results are as follows:1. In terms of relation between landscape characteristics and soil erosion module, forest canmitigate the soil erosion much better than grass. The relation between shrub and soil erosionmodule is rather complicated that requests further more study to confirm how those two factorscorrelated with each other. Cultivated land differs from other landscape classes in creatingconditions most favorable for soil erosion. Moreover, the dispersion of all landscape classes,except for shrub, correlates with soil module negatively.II2. In terms of relation between landscape characteristics and soil erosion strength, the diversityindex, fragment index, shape index and contagion index of the vegetation in Minjiangheadwater region at landscape-level correlated with soil erosion clearly. Vegetation landscapein No and Slight erosion region is more diverse, fragmental and constructed in more complexway. The shape of those vegetation patches is also more complicated. The spatial heterogeneityof the vegetation landscape is much more evident than that located in moderate and strong erosion region too.3. At class-level, different landscape classes affected soil erosion strength in different ways.Taking the mitigating effect on erosion strength into consideration, landscape classes can bearranged in this turn: coniferous forest > Deciduous forest > Mixed forest > Shrub > Grassland > Cultivated land. At the same time, for most landscape classes, except for cultivated land,increase the mean patch size and complicate the shape of patch will help to relieve the erosionstrength. However, for cultivated land, simplifying the shape of patch and scattering thepatches have the same effect.
Resumo:
该文在对新疆水土流失的现状、特点的分析的基础上 ,对现实存在着的水蚀强度、戈壁的风蚀强度、盐碱地的归属和侵蚀交错类型的分隔等问题进行了讨论 ,提出了自己的观点和看法 ,为水土流失调查提供借鉴
Resumo:
Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.
Resumo:
Purpose: To evaluate the ability of calcium-containing prescription-strength fluoride (F) toothpastes in preventing enamel erosion under low salivary flow simulating conditions. Methods: Enamel and dentin bovine specimens were assigned to the following groups: A - placebo; B - 1,100 ppm F/NaF (Aquafresh Advanced); C - 5,000 ppm F/NaF (Prevident 5000 Booster); D - 5000 ppm F/NaF+calcium sodium phosphosilicate (Topex Renew); and E - 5,000 ppm F/NaF+tri-calcium phosphate (Clinpro 5000). Specimens were positioned in custom-made devices, creating a sealed chamber on the surface, connected to peristaltic pumps. Citric acid was injected into the chamber for 2 minutes, followed by artificial saliva (0.05 ml/minute), for 60 minutes, 4x/day, for 3 days. Aquafresh was also tested under normal salivary flow (0.5 ml/minute), as reference (Group F). Specimens were exposed to the toothpastes for 2 minutes, 2x/day. After cycling, surface loss (SL) and concentration of loosely- and firmly-bound F were determined. Data were analyzed by ANOVA. Results: Group A (placebo) presented highest surface loss (SL), while Group F had the lowest, for both substrates. For enamel, none of the dentifrices differed from Group B or among each other. For dentin, none of the dentifrices differed from Group B, but Group E showed greater protection than Group C. Group E presented the highest F concentrations for both substrates, only matched by Group D for firmly-bound fluoride on enamel. All fluoridated dentifrices tested reduced SL, with no additional benefit from higher F concentrations. Some formulations, especially Clinpro 5000, increased F availability on the dental substrates, but no further erosion protection was observed.
Resumo:
A detailed study of the normalized correlations between the incubation period tc and the properties of various materials tested in a rotating disk device indicates that, at very high intensities, the strength properties influence the duration of tc. The analysis of extensive data from other laboratories for cavitation and liquid impingement erosion also indicates that, while both energy and strength properties influence the duration of tc, the latter ones predominate for a majority of cases. A fatigue-type failure occurs during tc. For estimating the time required to pierce a metallic specimen in a rotating device a relationship tp = 160 tc0.44 is proposed. A detailed study of normalized correlations between erosion resistance (inverse of erosion rate) and tc values of different materials tested in the rotating disk shows that correlations are good. Analysis of data from eight other investigators clearly points out the validity and the usefulness of this type of prediction.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
An investigation of the initiation and growth of erosion and of the effect of velocity and pressure on erosion in a rotating disk is presented. Also, the role of an intervening noncavitating period on erosion is studied. The results indicate that at high intensities the peak rate of erosion decreases with increases in pressure. The erosion rate/time curves obtained for metallic materials are explained by the eroded particle distribution and the cavity size. The average size of the eroded particles decreased when pressure and tensile strength of the material were increased. The erosion rate peaked after an intervening noncavitating period. The use of the rate of erosion, defined as an average over the entire test duration, in the equation governing the theory of erosion resulted in reasonably good correlations. The correlations reveal that it is possible to predict the length, width, and area of a cavity when the cavitation parameter σ is known. The normalized width of a cavity may be estimated if its normalized length is known.
Resumo:
The rates of erosive wear have been measured for a series of eight polyester-based one-component castable polyurethane elastomers, with widely varying mechanical properties. Erosion tests were conducted with airborne silica sand, 120μm in particle size, at an impact velocity of 50 ms-1 and impact angles of 30° and 90°. For these materials, which all showed similar values of rebound resilience, the erosion rate increased with increasing hardness, tensile modulus and tensile strength. These findings are at variance with those expected for wear by abrasion, perhaps because of differences in the strain rate or strain levels imposed on the elastomer during erosion and abrasion.
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.
Resumo:
Under the environment of seawater, durability of concrete materials is one of the chief factors considered in the design of structures. The decrease of durability of structures is induced by the evolution of micro-damage due to the erosion of chlorine and sulfate ions, which is characterized by the reduction of modulus, strength, and toughness of the material. In this paper, the variation of the flexural strength of cement mortar under sulfate erosion is investigated. The results obtained in present work indicate that the erosion time, concentration of sulfate solution, and water-to-cement ratio will significantly affect the flexural strength. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
The magnitude evolution of ettringite and gypsum in hydrated Portland cement mortars due to sulfate attack was detected by X-ray powder diffraction. The influences of sulfate concentration and water-to-cement ratio on the evolution of ettringite and gypsum were investigated. Experimental results show that the magnitude of ettringite formation in sodium sulfate solution follows a three-stage process, namely, the 'penetration period', 'enhance period of strength', and 'macro-crack period'. The cracking of concrete materials is mainly attributed to the effect of ettringite. The gypsum formations occurred in two stages, the 'latent period' and the 'accelerated period'. The gypsum formation including ettringite formation was relative to the linear expansion of mortars to some extend. Both water-to-cement ratio and sulfate concentration play important roles in the evolution of ettringite and gypsum. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.
Resumo:
In the desert areas of China investigated by the authors, various biological crusts were predominately associated with three blue-green algal (cyano bacterial) species, Microcoleus vaginatus Gom., Phormidium tenue (Menegh.) Gom. and Seytonema javanicum (Mitz.) Born et Flah. Their biomass and their compressive strength were measured simultaneously in the field in this study. It was also found that the compressive strength of algal crusts was enhanced with the increasing of algal biomass from an undetectable level to a value as high as 9.6mg g(-1) dry soil. However, when the algal biomass decreased, the compressive strength did not descend immediately, but remained relatively steady. The higher the algal biomass became, the thicker were the algal crusts formed. Given the same biomass, the highest compressive strength of man-made algal crusts in fields was found at an algal ratio of 62.5% M. vaginatus, 31.25% P. tenue and 6.25% S. javanicum, and it reached 0.89kgcm(-2). When the biomass of the crusts increased above the value of 8.16 mg chl ag(-1) dry soil, the compressive strength would not ascend easily. It indicated that the compressive strength of man-made algal crusts appeared temporarily saturated in the field. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.