997 resultados para ergogenic aid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Intense exercise induced acidosis occurs from the accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract any detrimental effect of acidosis and benefit performance. The aim of this study was to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance in healthy males. Methods Five males ingested either ß-alanine (BAl) (4.8 g.d-1 for 4wk, then 6.4 g.d-1 for 2wk) or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Following supplementation, participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test of 5 x 6s, with 24s rest periods, was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of their max workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with magnetic resonance spectrometry was performed in the soleus and gastrocnemius. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Results Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively with 6 wk supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate in the BAl condition was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. FIG. 1: Changes in carnosine concentration in the gastrocnemius prior and post 6 week chronic supplementation of placebo and β-alanine. Values expressed as mean.* p<0.05 from Pl at 6 weeks, # p<0.05 from pre supplementation. Conclusion/Discussion Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. However, this only translated into enhanced performance during the CCT110% high intensity cycling exercise protocol, with no change observed during the RSA test. No differences in post exercise and recovery plasma lactates and blood pH, indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple bout high intensity exercise. Changes in plasma lactate during recovery supports that ß-alanine supplementation may affect anaerobic metabolism however during single bout high intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense exercise induced acidosis occurs after accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract detrimental effects of acidosis and benefit performance. This study aimed to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance. Five healthy males ingested either ß-alanine or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of maximum workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with in vivo magnetic resonance spectrometry was performed in the soleus and gastrocnemius muscle. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively after supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate after BAI was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. This translated into enhanced performance during the CCT110% high intensity cycling exercise protocol but not during the RSA test. The lack of change in plasma lactate or blood pH indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple-bout high-intensity exercise. Changes measured in plasma lactate during recovery support the hypothesis that ß-alanine supplementation may affect anaerobic metabolism particularly during single bout high intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A double-blinded, placebo controlled, cross-over design was used to investigate sodium citrate dihydrate (Na-CIT) supplementation improve 200m swimming performance. Ten well-trained, male swimmers (14.9 ± 0.4y; 63.5 ± 4kg) performed four 200m time trials: acute (ACU) supplementation (0.5g/kg), acute placebo (PLC-A), chronic (CHR) (0.1g/kg for 3 days and 0.3g/kg on the 4th day pre-trial), and chronic placebo (PLC-C). Na-CIT was administered 120min pre-trial in solution with 500mL of flavored water; placebo was flavored water. Blood lactate, base excess (BE), bicarbonate, pH, and PCO2 were analyzed at basal, 100min post-ingestion, and 3min post-trial via finger prick. Time, lactate, and rate of perceived exertion were not different between trials. BE and bicarbonate were significantly higher for the ACU and CHR trials compared to placebo. “Responders” improved by 1.03% (P=0.043) and attained significantly higher post-trial lactate concentrations in the ACU versus PLC-A trials and compared to non-responders in the ACU and CHR trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: This study investigated whether acute (5 d) and/or short-term (28 d) creatine (Cr) ingestion altered glucose tolerance or insulin action in healthy, untrained men (aged 26.9 ± 5.7 yr; SD). Methods : Subjects were randomly allocated to either a Cr (N = 8) or placebo group (N = 9) and were tested in the control condition (presupplementation), and after 5 and a further 28 d of supplementation. The Cr group ingested 20 g and 3 g·d-1 of Cr for the first 5 and following 28 d, respectively. The placebo group ingested similar amounts of glucose over the same time period. During each testing period, subjects underwent an oral glucose tolerance test (OGTT) to determine insulin sensitivity, and six subjects from each group underwent a muscle biopsy before each OGTT. Results : Cr supplementation resulted in an increased (P < 0.05) muscle TCr content after both the acute and short-term loading phase compared with placebo. Neither acute nor short-term Cr supplementation influenced skeletal muscle glycogen content, glucose tolerance, or measures of insulin sensitivity. Conclusions: These findings demonstrated that acute Cr supplementation (20 g·d-1 for 5 d) followed by short-term Cr supplementation (3 g·d-1 for 28 d) did not alter insulin action in healthy, active untrained men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effect of vegetarianism on skeletal muscle total creatine (TCr) content and creatine transporter (CreaT) gene expression, prior to and during 5 d of Cr supplementation (CrS). In a double-blind, crossover design, 7 vegetarians (VEG) and nonvegetarians (NVEG) were assigned Cr or placebo supplements for 5 d and after 5 wk, received the alternative treatment. Muscle sampling occurred before, and after 1 and 5 d of treatment ingestion. Basal muscle TCr content was lower (P < 0.05) in VEG compared with NVEG. Muscle TCr increased (P < 0.05) throughout the Cr trial in both groups but was greater (P < 0.05) in VEG compared with NVEG, at days 1 and 5. CreaT gene expression was not different between VEG and NVEG. The results indicate that VEG have a lower muscle TCr content and an increased capacity to load Cr into muscle following CrS. Muscle CreaT gene expression does not appear to be affected by vegetarianism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of creatine supplementation (CrS) on sprint exercise performance and skeletal muscle anaerobic metabolism during and after sprint exercise. Eight active, untrained men performed a 20-s maximal sprint on an air-braked cycle ergometer after 5 days of CrS [30 g creatine (Cr) + 30 g dextrose per day] or placebo (30 g dextrose per day). The trials were separated by 4 wk, and a double-blind crossover design was used. Muscle and blood samples were obtained at rest, immediately after exercise, and after 2 min of passive recovery. CrS increased the muscle total Cr content (9.5 ± 2.0%, P < 0.05, mean ± SE); however, 20-s sprint performance was not improved by CrS. Similarly, the magnitude of the degradation or accumulation of muscle (e.g., adenine nucleotides, phosphocreatine, inosine 5′-monophosphate, lactate, and glycogen) and plasma metabolites (e.g., lactate, hypoxanthine, and ammonia/ammonium) were also unaffected by CrS during exercise or recovery. These data demonstrated that CrS increased muscle total Cr content, but the increase did not induce an improved sprint exercise performance or alterations in anaerobic muscle metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Sodium bicarbonate (NaHCO3) is often ingested at a dose of 0.3 g/kg body mass (BM), but ingestion protocols are inconsistent in terms of using solution or capsules, ingestion period, combining NaHCO3 with sodium citrate (Na3C6H5O7), and coingested food and fluid. Purpose: To quantify the effect of ingesting 0.3 g/ kg NaHCO3 on blood pH, [HCO3 -], and gastrointestinal (GI) symptoms over the subsequent 3 hr using a range of ingestion protocols and, thus, to determine an optimal protocol. Methods: In a crossover design, 13 physically active subjects undertook 8 NaHCO3 experimental ingestion protocols and 1 placebo protocol. Capillary blood was taken every 30 min and analyzed for pH and [HCO3 -]. GI symptoms were quantified every 30 min via questionnaire. Statistics used were pairwise comparisons between protocols; differences were interpreted in relation to smallest worthwhile changes for each variable. A likelihood of >75% was a substantial change. Results: [HCO3 -] and pH were substantially greater than in placebo for all other ingestion protocols at almost all time points. When NaHCO3 was coingested with food, the greatest [HCO3 -] (30.9 mmol/kg) and pH (7.49) and lowest incidence of GI symptoms were observed. The greatest incidence of GI side effects was observed 90 min after ingestion of 0.3 g/kg NaHCO3 solution. Conclusions: The changes in pH and [HCO3 -] for the 8 NaHCO3-ingestion protocols were similar, so an optimal protocol cannot be recommended. However, the results suggest that NaHCO3 coingested with a high-carbohydrate meal should be taken 120-150 min before exercise to induce substantial blood alkalosis and reduce GI symptoms. ABSTRACT FROM AUTHOR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effects of long-term creatine supplementation combined with resistance training (RT) on the one-repetition maximum (1RM) strength, motor functional performance (e.g., 30-s chair stand, arm curl, and getting up from lying on the floor tests) and body composition (e.g., fat-free mass, muscle mass, and % body fat using DEXA scans) in older women. Eighteen healthy women (64.9 ± 5.0 years) were randomly assigned in a double-blind fashion to either a creatine (CR, N = 9) or placebo (PL, N = 9) group. Both groups underwent a 12-week RT program (3 days week-1), consuming an equivalent amount of either creatine (5.0 g day-1) or placebo (maltodextrin). After 12 week, the CR group experienced a greater (P < 0.05) increase (Δ%) in training volume (+164.2), and 1RM bench press (+5.1), knee extension (+3.9) and biceps curl (+8.8) performance than the PL group. Furthermore, CR group gained significantly more fat-free mass (+3.2) and muscle mass (+2.8) and were more efficient in performing submaximal-strength functional tests than the PL group. No changes (P > 0.05) in body mass or % body fat were observed from pre- to post-test in either group. These results indicate that long-term creatine supplementation combined with RT improves the ability to perform submaximal-strength functional tasks and promotes a greater increase in maximal strength, fat-free mass and muscle mass in older women. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Anabolic androgenic steroids (AAS) are frequently used by people whose aim to increase muscle mass to obtain a better performance in sports or improve physical appearance. AAS are synthetic derivatives of testosterone, able to promote muscle fibers hypertrophy, increasing intracellular protein synthesis. L-carnitine is a food supplement used to increase energetic production by means of fat acids oxidation. Although there are several works about physiological properties of these drugs, there are few studies about their mutagenic potential. OBJECTIVES: This work evaluated the clastogenicity and genotoxicity of nandrolone decanoate, testosterone decanoate and L-carnitine, in different treatments through the micronucleus test in polychromatic erythrocytes of Wistar rats. METHODS: The animals were submitted to different concentrations and associations of AAS. The positive control received cyclophosphamide 50 mg/kg by intraperitoneal injection and negative control, one ml of saline solution by gavage. The rats were sacrificed after 36 hours of latest application, having the femurs removed and the bone marrow extracted. Material was homogenized and centrifuged. Button cell was pipetted and transferred to slides, which were stained by Giemsa. 1,000 polychromatic erythrocytes were counted per animal, noting the frequency of micronuclei. RESULTS: The Kruskal-Wallis test was performed, with a significance level of 5%, which demonstrated that nandrolone decanoate - three doses of 0,2 mg/kg and 0,6 mg/kg, eight doses of 7,5 mg/kg, L-carnitine - seven doses of 0,4 ml/250 g and 1,5 ml/250 g, testosterone decanoate - 28 doses of 0,075 mg/kg, nandrolone decanoate - eight doses of 7,5 mg/kg associated to L-carnitine and 1 mL and nandrolone decanoate - eight doses of 7,5 mg/kg associated to testosterone decanoate - eight doses of 7,5 mg/kg, showed mutagenic potential. CONCLUSION: The treatments proved to be clastogenic, not being indicated like ergogenic aid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to investigate the effects of acute supplementation of sodium bicarbonate (NaHCO3) on maximal accumulated oxygen deficit (MAOD) determined by a single supramaximal effort (MAODALT) in running and the correlation with 200- and 400-m running performances. Fifteen healthy men (age, 23 ± 4 years; maximal oxygen uptake, 50.6 ± 6.1 mL·kg(-1)·min(-1)) underwent a maximal incremental exercise test and 2 supramaximal efforts at 110% of the intensity associated with maximal oxygen uptake, which was carried out after ingesting either 0.3 g·kg(-1) body weight NaHCO3 or a placebo (dextrose) and completing 200- and 400-m performance tests. The study design was double-blind, crossover, and placebo-controlled. Significant differences were found between the NaHCO3 and placebo conditions for MAODALT (p = 0.01) and the qualitative inference for substantial changes showed a very likely positive effect (98%). The lactic anaerobic contribution in the NaHCO3 ingestion condition was significantly higher (p < 0.01) and showed a very likely positive effect (99% chance), similar to that verified for peak blood lactate concentration (p < 0.01). No difference was found for time until exhaustion (p = 0.19) or alactic anaerobic contribution (p = 0.81). No significant correlations were observed between MAODALT and 200- and 400-m running performance tests. Therefore, we can conclude that both MAODALT and the anaerobic lactic metabolism are modified after acute NaHCO3 ingestion, but it is not correlated with running performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60-80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2 x 800 mg sustained-release Carnosyn (TM) tablets, given 2 times per day). The PL group received 2 x (2 x 800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p = 0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p = 0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p = 0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r = 0.62; p = 0.01) and in the incremental test (r = 0.48; p = 0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 +/- 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results: Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions: Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.