998 resultados para equal channel angular pressing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were A (E) /(A) over bar (E) and B(E)/(B) over bar (E) in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of different routes of equal channel angular pressing (A, B-c, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route B-c deformed sample. The activation energy for recrystallization is lower for route B-c. (C) 2012 International Centre for Diffraction Data doi:10.1017/S0885715612000310]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted similar to 55 degrees due to negative shear attributed to friction. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent successful development of the equal channel angular pressing (ECAP) process in metals provides a feasible solution to produce ultra-fine or nano-grained bulk: materials with tailored material properties. However, ECAP is difficult to scale up commercially due to excessive load requirements. In this paper, a new Multi-ECAP process with die rotation is considered to obtain ultra-fine grain structured materials under a moderate deformation force. It is shown that an addition of torsion results in a reduction in the pressing force and an increase in severity of plastic deformation. An analysis using the upper bound method is found to be useful in predicting the pressing load and flow pattern of ECAP with and without rotational dies. Solutions are obtained for different inclined channel angles under different angular velocities of dies. Relative pressures are presented and some computed solutions are compared with those found by FEM simulation. The theoretical predictions of the pressing load are in good agreement with the simulation results. The amount of plastic deformation is determined by the inclined angle between the two intersecting channels, and the velocity ratio between the angular velocity of dies and the normal component of the punch velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study contrasts the extent to which laboratory and industrial scale variants of equal channel angular pressing (ECAP) impart desirable microstructures and mechanical properties in Grades 2 and 4 titanium. Industrial-scale ECAP-Conform (ECAP-C) with post-ECAP thermo-mechanical processing (TMP) enhanced performance levels beyond those achieved with the same material processed in the laboratory by ECAP only. ECAP-C processed titanium demonstrated exceptional tensile properties and fatigue strength, superior even to conventional Ti-6Al-4V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equal-channel angular pressing (ECAP) is a well-established thermo-mechanical processing technique. This technique allows virtually unlimited strain and manipulation of texture by processing route, while the cross-section of the sample remains unchanged during processing. In order to clarify the effectiveness of ECAP on preparing anisotropic permanent magnets, the microstructure and magnetic properties of a melt-spun Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy processed at 773-K for 300-s by ECAP were investigated. Macrotexture analysis carried out for the exit channel of ECAP shows that the basal plane of the tetragonal Nd2Fe14B crystal aligns parallel to the shear band, i.e., the c-axis texture formation normal to the shear band induced by the ECAP process. Due to this texture formation, the technical magnetization behaviour becomes anisotropic, and the remanent magnetization is clearly enhanced along the direction perpendicular to the shear band. This anisotropic microstructure is realized at a relatively low processing temperature of 773-K, well below the melting point of the Nd-rich intergranular phase. As a consequence of this lower processing temperature, the nanostructure of the melt-spun alloy remains approximately 20 to 30-nm, considerably smaller than the typical grain size obtained after conventional die-upsetting. Our study demonstrates that equal-channel angular pressing has a potential for realising anisotropic nanostructured magnets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excellent superplastic elongations (in excess of 1,200%) were achieved in a commercial cast AZ31 alloy processed by low temperature equal-channel angular pressing (ECAP) with a back-pressure to produce a bimodal grain structure. In contrast, AZ31 alloy processed by ECAP at temperatures higher than 200 °C showed a reasonably uniform grain structure and relatively low ductility. It is suggested that a bimodal grain structure is advantageous because the larger grains contribute to strain hardening thus delaying the onset of necking, while grain boundary sliding associated with small grains provides a stabilizing effect due to enhanced strain rate sensitivity. © 2008 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation was initiated to evaluate the feasibility of using equal-channel angular pressing (ECAP) to obtain high superplastic elongations in the AZ31 alloy with a back pressure producing a bimodal grain structure. Processing by ECAP was performed using a die with an angle of 90 ° between the two parts of the channel and a ram velocity of 15-20 mm/sec. Some pressing were conducted with a back-pressure by making use of a backward punch in the exit channel of the die. Molybdenum disulphide and a graphite spray were used as lubricants and billets were pressed using processing route B c in which each billet is rotated by 90 °. The pressing were conducted at temperatures in the range from 423 to 523 K and every billet was quenched in water after each pass. The significance of the bimodal microstructure is attributed to the ability of the larger grains to more easily accommodate grain boundary sliding through intragranular slip and twinning and to contribute to the strain hardening capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, compaction by warm equal-channel angular pressing (ECAP) with back pressure was used to produce Ti-6Al-4V billets from both commercially pure (CP) titanium and titanium hydride (TiH 2) powders, which were mixed with pulverised binary Al-V master alloys of two distinct Al/V ratios and with elemental aluminium powder to arrive at the nominal alloy composition. It was demonstrated that the right combination of temperature, high hydrostatic pressure and plastic shear deformation permits consolidation of the powder mixture to maximum green densities of 99.26%. Moreover, after direct compaction of blended elemental powders by equal-channel angular pressing (ECAP) with back pressure, the sintering temperature required for chemical and microstructural homogenisation of the compacts could be reduced by 150-250°C. This was possible due to high green density, increased contact area between powder particles and the formation of fast diffusion paths associated with grain refinement by severe plastic deformation. The sintered Ti-6Al-4V billets exhibited a maximum density of 99.88%, Vickers hardness of 409-445 HV1 and ultimate tensile strength in the range of 1000-1080MPa. In contrast to findings of other authors, the use of TiH 2 powders in conjunction with ECAP processing did not bring any benefits with regard to the production of the Ti-6Al-4V alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of back pressure during equal channel angular pressing (ECAP) on deformation-induced porosity is investigated. While percolating porosity was found after 4 ECAP passes in the absence of back pressure, no percolation was detected when a back pressure of 200 MPa was applied. However, after ECAP with back pressure continued to 8 passes, percolating porosity did appear. The nature of the percolating porosity developed in severely deformed materials is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al and Mg machining chip blends were compacted by equal-channel angular pressing with back pressure. By varying the weight fraction of the constituent materials, temperature and processing route, as well as employing subsequent heat treatment, the microstructure and the mechanical properties of the compact were varied. The width of the interdiffusion zone and the formation of intermetallic phases near the interfaces between the two metals were studied by energy-dispersive X-ray spectroscopy and nanoindentation. It was shown that substantial improvement of mechanical properties, such as an increase of strength, strain-hardening capability and ductility, can be obtained. This is achieved by changing the processing parameters of equal-channel angular pressing and the annealing temperature, as well as by optimising the weight fraction of the constituent metals. © 2013 Springer Science+Business Media New York.