998 resultados para equal channel angular extrusion (ECAE)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texture development in commercially pure titanium during equal channel angular extrusion (ECAE) through Routes A, Be and C has been studied up to three passes at 400 C. Textures were measured using X-ray diffraction, while the microstructural analyses were performed using electron back-scattered diffraction as well as transmission electron microscopy. Occurrences of dynamic restoration processes (recovery and recrystallization) were clearly noticed at all levels of deformations. Finally, the textures were simulated using a viscoplastic polycrystal self-consistent (VPSC) model. Simulations were performed incorporating basal, prismatic and pyramidal slip systems as well as tensile and compressive twinning. The simulated textures corroborate well with experimental textures in spite of the occurrence of dynamic restoration processes. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equal channel angular extrusion (ECAE), with simultaneous application of back pressure, has been applied to the consolidation of 10 mm diameter billets of pre-alloyed, hydride-dehydride Ti-6Al-4V powder at temperatures ≤400 °C. The upper limit to processing temperature was chosen to minimise the potential for contamination with gaseous constituents potentially harmful to properties of consolidated product. It has been demonstrated that the application of ECAE with imposed hydrostatic pressure permits consolidation to in excess of 96% relative density at temperatures in the range 100-400 °C, and in excess of 98% at 400 °C with applied back pressure ≥175 MPa. ECAE compaction at 20 °C (back pressure = 262 MPa) produced billet with 95.6% relative density, but minimal green strength. At an extrusion temperature of 400 °C, the relative density increased to 98.3%, for similar processing conditions, and the green strength increased to a maximum 750 MPa. The relative density of compacts produced at 400 °C increased from 96.8 to 98.6% with increase in applied back pressure from 20 to 480 MPa, while Vickers hardness increased from 360 to 412 HV. The key to the effective low-temperature compaction achieved is the severe shear deformation experienced during ECAE, combined with the superimposed hydrostatic pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow lines were analysed in aluminium alloy 6061 during equal channel angular extrusion (ECAE) in a 90° die with and without the application of back pressure during pressing. The lines appeared much more rounded when a back pressure was applied compared to the case of conventional ECAE testing. With the help of an analytic flow function, the deformation field was obtained. It is shown that back pressure slightly lowers the total strain, strongly increases the size of the plastic zone and significantly reduces the plastic strain rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local texture and microstructure was investigated to study the deformation mechanisms during equal channel angular extrusion of a high purity nickel single crystal of initial cube orientation. A detailed texture and microstructure analysis by various diffraction techniques revealed the complexity of the deformation patterns in different locations of the billet. A modeling approach, taking into account slip system activity, was used to interpret the development of this heterogeneous deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain growth kinetics was studied for commercially pure magnesium subjected to equal channel angular extrusion (ECAE). The specimens were ECAE processed upto 4 passes at 523 K following all the three important routes, namely A, 13, and C. Texture and microstructures of the samples were studied using Electron Back Scattered Diffraction (EBSD) technique in a Field Emission Gun Scanning Electron Microscope (FEG-SEM). It was observed that the grain size significantly reduces after ECAE. ECAE process produces a slightly rotated B and C-2 fiber. Static annealing leads to normal grain growth with unimodal distribution of grains through out the temperature range. Average activation energy for grain growth in the temperature range studied is found to be less than the activation energy for lattice diffusion and grain boundary diffusion of magnesium. No significant change in texture during isochronal annealing for 1 hour i.e., the predominant deformation texture remains same.