11 resultados para eplerenone
Resumo:
In the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study ( n = 6632), eplerenone- associated reduction in all- cause mortality was significantly greater in those with a history of hypertension ( Hx- HTN). There were 4007 patients with Hx- HTN ( eplerenone: n = 1983) and 2625 patients without Hx- HTN ( eplerenone: n = 1336). Propensity scores for eplerenone use, separately calculated for patients with and without Hx- HTN, were used to assemble matched cohorts of 1838 and 1176 pairs of patients. In patients with Hx- HTN, all- cause mortality occurred in 18% of patients treated with placebo ( rate, 1430/ 10 000 person- years) and 14% of patients treated with eplerenone ( rate, 1058/ 10 000 person- years) during 2350 and 2457 years of follow- up, respectively ( hazard ratio [ HR]: 0.71; 95% CI: 0.59 to 0.85; P < 0.0001). Composite end point of cardiovascular hospitalization or cardiovascular mortality occurred in 33% of placebo-treated patients ( 3029/ 10 000 person- years) and 28% of eplerenone- treated patients (2438/10 000 person- years) with Hx- HTN ( HR: 0.82; 95% CI: 0.72 to 0.94; P = 0.003). In patients without Hx- HTN, eplerenone reduced heart failure hospitalization ( HR: 73; 95% CI: 0.55 to 0.97; P = 0.028) but had no effect on mortality ( HR: 0.91; 95% CI: 0.72 to 1.15; P = 0.435) or on the composite end point ( HR: 0.91; 95% CI: 0.76 to 1.10; P = 0.331). Eplerenone should, therefore, be prescribed to all of the post - acute myocardial infarction patients with reduced left ventricular ejection fraction and heart failure regardless of Hx- HTN.
Resumo:
OBJECTIVES: This study was designed to evaluate the impact of eplerenone on collagen turnover in preserved systolic function heart failure (HFPSF).
BACKGROUND: Despite growing interest in abnormal collagen metabolism as a feature of HFPSF with diastolic dysfunction, the natural history of markers of collagen turnover and the impact of selective aldosterone antagonism on this natural history remains unknown.
METHODS: We evaluated 44 patients with HFPSF, randomly assigned to control (n = 20) or eplerenone 25 mg daily (n = 24) for 6 months, increased to 50 mg daily from 6 to 12 months. Serum markers of collagen turnover and inflammation were analyzed at baseline and at 6 and 12 months and included pro-collagen type-I and -III aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha. Doppler-echocardiographic assessment of diastolic filling indexes and tissue Doppler analyses were also obtained.
RESULTS: The mean age of the patients was 80 +/- 7.8 years; 46% were male; 64% were receiving an angiotensin-converting enzyme inhibitor, 34% an angiotensin-II receptor blocker, and 68% were receiving beta-blocker therapy. Pro-collagen type-III and -I aminoterminal peptides, matrix metalloproteinase type-2, interleukin-6 and -8, and tumor necrosis factor-alpha increased with time in the control group. Eplerenone treatment had no significant impact on any biomarker at 6 months but attenuated the increase in pro-collagen type-III aminoterminal peptide at 12 months (p = 0.006). Eplerenone therapy was associated with modest effects on diastolic function without any impact on clinical variables or brain natriuretic peptide.
CONCLUSIONS: This study demonstrates progressive increases in markers of collagen turnover and inflammation in HFPSF with diastolic dysfunction. Despite high background utilization of renin-angiotensin-aldosterone modulators, eplerenone therapy prevents a progressive increase in pro-collagen type-III aminoterminal peptide and may have a role in management of this disease. (The Effect of Eplerenone and Atorvastatin on Markers of Collagen Turnover in Diastolic Heart Failure; NCT00505336).
Resumo:
Objective - Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results - VSMCs from WKY rats were studied. At low concentrations (10(-10) mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone ( Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 ( inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src-dependent activation of NAD(P)H oxidase and c-Src-independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions - Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src-independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.
Resumo:
AIMS: Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. METHODS AND RESULTS: C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. CONCLUSION: Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.
Resumo:
Central serous chorioretinopathy (CSCR) is a vision-threatening eye disease with no validated treatment and unknown pathogeny. In CSCR, dilation and leakage of choroid vessels underneath the retina cause subretinal fluid accumulation and retinal detachment. Because glucocorticoids induce and aggravate CSCR and are known to bind to the mineralocorticoid receptor (MR), CSCR may be related to inappropriate MR activation. Our aim was to assess the effect of MR activation on rat choroidal vasculature and translate the results to CSCR patients. Intravitreous injection of the glucocorticoid corticosterone in rat eyes induced choroidal enlargement. Aldosterone, a specific MR activator, elicited the same effect, producing choroid vessel dilation -and leakage. We identified an underlying mechanism of this effect: aldosterone upregulated the endothelial vasodilatory K channel KCa2.3. Its blockade prevented aldosterone-induced thickening. To translate these findings, we treated 2 patients with chronic nonresolved CSCR with oral eplerenone, a specific MR antagonist, for 5 weeks, and observed impressive and rapid resolution of retinal detachment and choroidal vasodilation as well as improved visual acuity. The benefit was maintained 5 months after eplerenone withdrawal. Our results identify MR signaling as a pathway controlling choroidal vascular bed relaxation and provide a pathogenic link with human CSCR, which suggests that blockade of MR could be used therapeutically to reverse choroid vasculopathy.
Resumo:
PURPOSE:: Based on experimental data showing that central serous chorioretinopathy could result from overactivation of mineralocorticoid receptor pathway in choroid vessels, the authors studied eplerenone, a mineralocorticoid receptor antagonist, as a potential treatment for chronic central serous chorioretinopathy. METHODS:: This nonrandomized pilot study included 13 patients with central serous chorioretinopathy of at least 4-month duration, treated with 25 mg/day of oral eplerenone for a week followed by 50 mg/day for 1 or 3 months. The primary outcome measure was the changes in central macular thickness recorded by optical coherence tomography, and the secondary outcomes included changes in foveal subretinal fluid (SRF) measured by OCT, in best-corrected visual acuity (BCVA) and the percentage of eyes achieving complete resolution of subretinal fluid during the treatment period. RESULTS:: Central macular thickness decreased significantly from 352 ± 139 μm at baseline to 246 ± 113 μm and 189 ± 99 μm at 1 and 3 months under eplerenone treatment (P < 0.05 and P < 0.01, respectively). At 3 months, the subretinal fluid significantly decreased compared with baseline subretinal fluid (P < 0.01) and best-corrected visual acuity significantly improved compared with baseline best-corrected visual acuity (P < 0.001). CONCLUSION:: Eplerenone treatment was associated with a significant reduction in central macular thickness, subretinal fluid level, and an improvement in visual acuity. Randomized controlled trials are needed to confirm these encouraging results.
Resumo:
Mineralocorticoid signaling pathway plays a pivotal role in cardiovascular physiopathology. Evidences from clinical and experimental studies have linked mineralocorticoid hormones with cardiovascular morbiditiy and mortality. Thus, antagonist of the mineralocorticoid receptor (AMR) has reappeared. In addition, a novel mineralocorticoid receptor antagonist has been developped, named eplerenone, which lack the side effect of former ARMs as gynecomastia. Based on two studies named RALES et EPHESUS, guidelines of the european and american societies of cardiology recommend the use of ARMs as a treatment for cardiac failure NYHA III and IV, and post-infarct cardiac failure (ejection fraction < 40%).
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.
Resumo:
Aldosterone plays a pivotal role in sodium and water homeostasis, in particular in patients with heart failure or high blood pressure. These medications, when used on top of a standard therapy, improve the outcome of patients with heart failure and are also effective in lowering blood pressure of hypertensive patients. The major risk associated with the use of these antagonists is hyperkalemia, which can be prevented in avoiding their prescription in patients with impaired renal function. Eplerenone has the advantage, compared with spironolactone, to be better tolerated in terms of "hormonal" adverse effects.
Resumo:
OBJECTIVE: Experimental evidence suggests that aldosterone directly contributes to organ damage by promoting cell growth, fibrosis, and inflammation. Based on these premises, this work aimed to assess the glomerular effects of aldosterone, alone and in combination with salt. METHODS: After undergoing uninephrectomy, 75 rats were allocated to five groups: control, salt diet, aldosterone, aldosterone + salt diet, aldosterone + salt diet and eplerenone, and they were all studied for four weeks. We focused on glomerular structural, functional, and molecular changes, including slit diaphragm components, local renin-angiotensin system activation, as well as pro-oxidative and profibrotic changes. RESULTS: Aldosterone significantly increased systolic blood pressure, led to glomerular hypertrophy, mesangial expansion, and it significantly increased the glomerular permeability to albumin and the albumin excretion rate, indicating the presence of glomerular damage. These effects were worsened by adding salt to aldosterone, while they were reduced by eplerenone. Aldosterone-induced glomerular damage was associated with glomerular angiotensin-converting enzyme (ACE) 2 downregulation, with ACE/ACE2 ratio increase, ANP decrease, as well as with glomerular pro-oxidative and profibrotic changes. CONCLUSIONS: Aldosterone damages not only the structure but also the function of the glomerulus. ACE/ACE2 upregulation, ACE2 and ANP downregulation, and pro-oxidative and profibrotic changes are possible mechanisms accounting for aldosterone-induced glomerular injury.
Resumo:
Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.