948 resultados para epidermal proliferation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the expression and function of the isoforms of laminin bearing the alpha(5) chain, i.e. laminin-10/11 in neonatal and adult human skin. By immunostaining human skin derived from a variety of anatomic sites, we found that the laminin-alpha(5) chain is expressed abundantly in the basement membrane underlying the interfollicular epidermis and the blood vessels in the dermis. Interestingly, while the expression level of the well-studied laminin-5 isoform did not change significantly with age, laminin-10/11 (a5 chain) appeared to decrease in the basement membrane underlying the epidermis, in adult skin. In contrast, the levels of laminin-10/11 in the basement membrane underlying blood vessels remained unchanged in neonatal vs. adult skin. Importantly, in vitro cell adhesion assays demonstrated that laminin-10/11 is a potent adhesive substrate for both neonatal and adult keratinocytes and that this adhesion is mediated by the alpha(3)beta(1), and alpha(6)beta(4) integrins. Adhesion assays performed with fractionated basal keratinocytes showed that stem cells, transit amplifying cells and early differentiating cells all adhere to purified laminin-10/11 via these receptors. Further, laminin-10/11 provided a proliferative signal for neonatal foreskin keratinocytes, adult breast skin keratinocytes, and even a human papillomavirus type-18 transformed tumorigenic keratinocyte cell line in vitro. Finally, laminin-10/11 was shown to stimulate keratinocyte migration in an in vitro wound healing assay. These results provide strong evidence for a functional role for laminin-10/11 in epidermal proliferation during homeostasis, wound healing and neoplasia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To study the involvement of cyclin D1 in epithelial growth and differentiation and its putative role as an oncogene in skin, transgenic mice were developed carrying the human cyclin D1 gene driven by a bovine keratin 5 promoter. As expected, all squamous epithelia including skin, oral mucosa, trachea, vaginal epithelium, and the epithelial compartment of the thymus expressed aberrant levels of cyclin D1. The rate of epidermal proliferation increased dramatically in transgenic mice, which also showed basal cell hyperplasia. However, epidermal differentiation was unaffected, as shown by normal growth arrest of newborn primary keratinocytes in response to high extracellular calcium. Moreover, an unexpected phenotype was observed in the thymus. Transgenic mice developed a severe thymic hyperplasia that caused premature death due to cardio-respiratory failure within 4 months of age. By 14 weeks, the thymi of transgenic mice increased in weight up to 40-fold, representing 10% of total body weight. The hyperplastic thymi had normal histology revealing a well-differentiated cortex and medulla, which supported an apparently normal T-cell developmental program based on the distribution of thymocyte subsets. These results suggest that proliferation and differentiation of epithelial cells are under independent genetic controls in these organs and that cyclin D1 can modulate epithelial proliferation without altering the initiation of differentiation programs. No spontaneous development of epithelial tumors or thymic lymphomas was perceived in transgenic mice during their first 8 months of life, although they continue under observation. This model provides in vivo evidence of the action of cyclin D1 as a pure mediator of proliferation in epithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 25-year-old-male patient had one keratinized tumor on the inferior right eyelid, first observed 5 months before. Its size had been increasing for the last three weeks. The visual function was normal. Clinical examination disclosed a papillomatous lesion on the cutaneous middle part of the eyelid. A surgical excision was performed under local anesthesia. The histopathological study found a papillomatous epidermal proliferation with both structural and cytological atypias, concluding with a precancerous keratosis of the eyelid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stem bark of the two species Stryphnodendron polyphyllum Mart. and Stryphnodendron obovatum Benth., Leguminosae, was investigated for wound healing, antibacterial and antioxidant activity. These plants contain 12 and 19% tannins in their stem bark, respectively, and are widely used in traditional medicine in Brazil. The total content of phenolics of the crude extract (CE) of Stryphnodendron obovatum was 76.95 +/- 2.98% (CV = 3.87%) and of the ethyl-acetate fraction (EAF) was 89.13 +/- 0.34% (CV = 0.38%); whereas in Stryphnodendron polyphyllum the CE phenolics content was 51.62 +/- 1.53% (CV = 2.96%) and the EAF phenolics content was 59.00 +/- 1.91% (CV = 3.24%). The tannin content of CE from Stryphnodendron obovatum [36.58 +/- 0.35% (CV = 0.98%)] was about 11% higher than in CE from Stryphnodendron polyphyllum [25.43 +/- 0.96% (CV = 3.77%)]. The difference between the species was even greater in the EAF: in Stryphnodendron obovatum the EAF phenolics content was 55.01 +/- 0.36% (CV = 0.65%), whereas in Stryphnodendron polyphyllum the content was 36.16 +/- 0.42% (CV = 1.16%). The healing effect of ointments containing 2.5% crude lyophilised extract (PCE) and 2.5% ethyl-acetate lyophilised fraction (PEA) of the stem bark of Stryphnodendron polyphyllum and Stryphnodendron obovatum was studied in cutaneous wounds of Wistar((R)) rats after 4, 7 and 10 days of treatment. Epithelial cell proliferation in the area of re-epithelialisation of the wounds was evaluated by counting the metaphases blocked by vincristine sulfate. With PCE an increase in epidermal growth was observed after 4 and 7 days of treatment with Stryphnodendron polyphyllum, and after 7 and 10 days of treatment with Stryphnodendron obovatum. Wounds treated with PEA of Stryphnodendron obovatum showed increased epidermal growth only 4 days after the treatment, for Stryphnodendron polyphyllum, epidermal growth was observed after 4 and 7 days of treatment. Both the CE and the EAF fractions of Stryphnodendron polyphyllum and Stryphnodendron obovatum showed antibacterial activity against Staphylococcus aureus with MIC values of 125 and 250 mu g/ml, respectively. Gram-negative bacteria tested were not inhibited by extracts and fractions at concentrations > 1000 mu g/ml. The antioxidant activity through reduction of the DPPH radical in TLC, confirmed the anti-radical properties of these extracts in both species. CE and EAF of both species showed a radical scavenging activity (RSA) and protected DPPH from discolouration, already at 0.032 mu g/ml. The extract from Stryphnodendron polyphyllum were more effective than those Stryphnodendron obovatum, although the former had a lower tannin content. (c) 2005 Elsevier B.V.. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Psoriasis is characterised by epidermal proliferation and inflammation resulting in the appearance of elevated erythematous plaques. The ratio of c~AMP/c~GMP is decreased in psoriatic skin and when the epidermal cell surface receptors are stimulated by β-adrenergic agonists, intracellular ATP is transformed into c-AMP, thus restoring the c~AMP/c~GMP levels. This thesis describes a series of β-adrenoceptor agonists for topical delivery based upon the soft-drug approach. Soft drugs are defined as biologically active, therapeutically useful chemical compounds (drugs) characterised by a predictable and controllable In vivo destruction (metabolism) to non-toxic moieties. after they achieve their therapeutic role, The N-substituent can accommodate a broad range of structures and here the alkoxycarbonylethyl group has been used to provide metabolic susceptability. The increased polarity of the dihydroxy acid, expected after metabolic conversion of the soft~drug, ethyl N-[2'-(3',4'-dihydroxyphenyl)-2'-hydroxyethyl]-3- aminopropionate, should eliminate agonist activity. Further. to prevent oxidation and enhance topical delivery, the catechol hydroxyl groups have been esterified to produce a pro-soft-drug which generates the soft-drug in enzymic systems. The chemical hydrolysis of the pro-soft-drug proceeded via the formation of the dlpivaloyloxy acid and it failed to generate the active dihydroxy ester soft-drug. In contrast, in the presence of porcine liver carboxyesterase, the hydrolysis of the pro-soft drug proceeded via the formation of the required active soft-drug. This compound, thus, has the appropnate kinetic features to enable it to be evaluated further as a drug for the treatment of psoriasis. The pH rate-profile for the hydrolysis of soft-drug indicated a maximum stability at pH ∼ 4.0. The individual rate constants for the degradation and the pKa were analysed by nonlinear regression. The pKa of 7.40 is in excellent agreement with that determined by direct titration (7.43) and indicates that satisfactory convergence was achieved. The soft-drug was poorly transported across a silicone membrane; it was also air-sensitive due to oxidation of the catechol group. The transport of the pro-soft-drug was more efficient and, over the donor pH range 3-8, increased with pH. At lower values, the largely protonated species was not transported. However, above pH 7. chemical degradation was rapid so that a donor pH of 5-6 was optimum. The β-adrenergic agonist activity of these compounds was tested in vitro by measuring chronotropic and inotropic responses in the guinea pig atria and relaxation of guinea pig trachea precontracted with acetylcholine (10-3 M). The soft~drug was a full agonist on the tracheal preparation but was less potent than isoprenaline. Responses of the soft~drug were competitively antagonised by propranolol (10-6 M). The soft~drug produced an increase in force and rate of the isolated atrial preparatIon. The propyl analogue was equally potent with ED50 of 6.52 x 10-7 M. In contrast, at equivalent doses, the dihydroxy acid showed no activity; only a marginal effect was observed on the tracheal preparation. For the pro~soft-drug, responses were of slow onset, in both preparations, with a slowly developing relaxatlon of the tracheal preparatlon at high concentrations (10-5 M). This is consistent with in vitro results where the dipivaloyl groups are hydrolysed more readily than the ethyl ester to gIve the active soft-drug. These results confirm the validity tif the pro-soft-drug approach to the deUvery of β-adrenoceptor agonists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dendritic epidermal T cells (DETC) comprise a unique population of T cells that reside in mouse epidermis and whose function remains unclear. Most DETC express a $\gamma\delta$ TCR, although some, including our DETC line, AU16, express an $\alpha\beta$ TCR. Additionally, AU16 cells express CD3, Thy-1, CD45, CD28, B7, and AsGM-1. Previous studies in our laboratory demonstrated that hapten-conjugated AU16 could induce specific immunologic tolerance in vivo and inhibit T cell proliferation in vitro. Both these activities are antigen-specific, and the induction of tolerance is non-MHC-restricted. In addition, AU16 cells are cytotoxic to a number of tumor cell lines in vitro. These studies suggested a role for these cells in immune surveillance. The purpose of my studies was to test the hypothesis that these functions of DETC (tolerance induction, inhibition of T cell proliferation, and tumor cell killing) were mediated by a cytotoxic mechanism. My specific aims were (1) to determine whether AU16 could prevent or delay tumor growth in vivo; and (2) to determine the mechanism whereby AU16 induce tolerance, using an in vitro proliferation assay. I first showed that AU16 cells killed a variety of skin tumor cell lines in vitro. I then demonstrated that they prevented melanoma growth in C3H mice when both cell types were mixed immediately prior to intradermal (i.d.) injection. Studies using the in vitro proliferation assay confirmed that DETC inhibit proliferation of T cells stimulated by hapten-bearing, antigen-presenting cells (FITC-APC). To determine which cell was the target, $\gamma$-irradiated, hapten-conjugated AU16 were added to the proliferation assay on d 4. They profoundly inhibited the proliferation of naive T cells to $\gamma$-irradiated, FITC-APC, as measured by ($\sp3$H) TdR uptake. This result strongly suggested that the T cell was the target of the AU16 activity because no APC were present by d 4 of the in vitro culture. In contrast, the addition of FITC-conjugated splenic T cells (SP-T) or lymph node T cells (LN-T) was less inhibitory. Preincubation of the T cells with FITC-AU16 cells for 24 h, followed by removal of the AU16 cells, completely inhibited the ability of the T cells to proliferate in response to FITC-APC, further supporting the conclusion that the T cell was the target of the AU16. Finally, AU16 cells were capable of killing a variety of activated T cells and T cell lines, arguing that the mechanism of proliferation inhibition, and possibly tolerance induction is one of cytotoxicity. Importantly, $\gamma\delta$ TCR$\sp+$ DETC behaved, both in vivo and in vitro like AU16, whereas other T cells did not. Therefore, these results are consistent with the hypothesis that AU16 cells are true DETC and that they induce tolerance by killing T cells that are antigen-activated in vivo. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hair follicle is a cyclic, self renewing epidermal structure which is thought to be controlled by signals from the dermal papilla, a specialized cluster of mesenchymal cells within the dermis. Topical treatments with 17-beta-estradiol to the clipped dorsal skin of mice arrested hair follicles in telogen and produced a profound and prolonged inhibition of hair growth while treatment with the biologically inactive stereoisomer, 17-alpha-estradiol, did not inhibit hair growth. Topical treatments with ICI 182,780, a pure estrogen receptor antagonist, caused the hair follicles to exit telogen and enter anagen, thereby initiating hair growth. Immunohistochemical staining for the estrogen receptor in skin revealed intense and specific staining of the nuclei of the cells of the dermal papilla. The expression of the estrogen receptor in the dermal papilla was hair cycle-dependent with the highest levels of expression associated with the telogen follicle. 17-beta-Estradiol-treated epidermis demonstrated a similar number of 5-bromo-2'-deoxyuridine (BrdUrd) S-phase cells as the control epidermis above telogen follicles; however, the number of BrdUrd S-phase basal cells in the control epidermis varied according to the phase of the cycle of the underlying hair follicles and ranged from 2.6% above telogen follicles to 7.0% above early anagen follicles. These findings indicate an estrogen receptor pathway within the dermal papilla regulates the telogen-anagen follicle transition and suggest that diffusible factors associated with the anagen follicle influence cell proliferation in the epidermis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regenerative proliferation occurs in the inner-ear sensory epithelial of warm-blooded vertebrates after insult. To determine how this proliferation is controlled in the mature mammalian inner ear, several growth factors were tested for effects on progenitor-cell division in cultured mouse vestibular sensory epithelia. Cell proliferation was induced in the sensory epithelium by transforming growth factor alpha (TGF-alpha) in a dose-dependent manner. Proliferation was also induced by epidermal growth factor (EGF) when supplemented with insulin, but not EGF alone. These observations suggest that stimulation of the EGF receptors by TGF-alpha binding, or EGF (plus insulin) binding, stimulates cell proliferation in the mature mammalian vestibular sensory epithelium.