916 resultados para enzyme precursor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to analyze the liver of Leporinus macrocephalus at the macroscopic and histologic level by evaluating the characteristics of the hepatic tissue. The fishes from a fishery in Bauru, S.P., were collected and sacrificed by destroying the spinal cord; afterwards the collected hepatic tissue was fixed and followed by histological routine. Macroscopic analysis of L. macrocephalus liver showed an organ of homogeneous structure, with red-brown color, located in the medial region of the body, caudal to heart and after the gills. It showed 3 pyramidal lobes, one central and two lateral right and left. The histological analysis showed the hepatic tissue constituted by hepatocytes cords surrounded by sinusoids, named muralium duplex. It yet revealed the diffused, distribution bile system by hepatic parenchyma, showing ducts with simple cubic epithelium, surrounded by muscular fibres and connective tissue. Cells of the exocrine pancreatic tissue were observed surrounding blood vessels in acinar arrangement as zymogen granules. Furthermore, there are melanomacrophages centers distributed along the hepatic parenchyma, preferably next to the blood vessels, constituted by cells accumulating material, such as melanin and lipofucsin, whose presence may be related to the nutritional status of the fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study determined if dentin proteases are denatured by phosphoric acid (PA) used in etch-and-rinse dentin adhesives. Dentin beams were completely demineralized with EDTA for 30 days. We acid-etched experimental groups by exposing the demineralized dentin beams to 1, 10, or 37 mass% PA for 15 sec or 15 min. Control beams were not exposed to PA but were incubated in simulated body fluid for 3 days to assay their total endogenous telopeptidase activity, by their ability to solubilize C-terminal crosslinked telopeptides ICTP and CTX from insoluble dentin collagen. Control beams released 6.1 ± 0.8 ng ICTP and 0.6 ± 0.1 ng CTX/mg dry-wt/3 days. Positive control beams pre-incubated in p-aminophenylmercuric acetate, a compound known to activate proMMPs, released about the same amount of ICTP peptides, but released significantly less CTX. Beams immersed in 1, 10, or 37 mass% PA for 15 sec or 15 min released amounts of ICTP and CTX similar to that released by the controls (p > 0.05). Beams incubated in galardin, an MMP inhibitor, or E-64, a cathepsin inhibitor, blocked most of the release of ICTP and CTX, respectively. It is concluded that PA does not denature endogenous MMP and cathepsin activities of dentin matrices. © 2013 International & American Associations for Dental Research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C-mannosylation of Trp-7 in human ribonuclease 2 (RNase 2) is a novel kind of protein glycosylation that differs fundamentally from N- and O-glycosylation in the protein-sugar linkage. Previously, we established that the specificity determinant of the acceptor substrate (RNase 2) consists of the sequence W-x-x-W, where the first Trp becomes C-mannosylated. Here we investigated the reaction with respect to the mannosyl donor and the involvement of a glycosyltransferase. C-mannosylation of Trp-7 was reduced 10-fold in CHO (Chinese hamster ovary) Lec15 cells, which are deficient in dolichyl-phosphate-mannose (Dol-P-Man) synthase activity, compared with wild-type cells. This was not a result of a decrease in C-mannosyltransferase activity. Rat liver microsomes were used to C-mannosylate the N-terminal dodecapeptide from RNase 2 in vitro, with Dol-P-Man as the donor. This microsomal transferase activity was destroyed by heat and protease treatment, and displayed the same acceptor substrate specificity as the in vivo reaction studied previously. The C-C linkage between the indole and the mannosyl moiety was demonstrated by tandem electrospray mass spectrometry analysis of the product. GDP-Man, in the presence of Dol-P, functioned as a precursor in vitro with membranes from wild-type but not CHO Lec15 cells. In contrast, with Dol-P-Man both membrane preparations were equally active. It is concluded that a microsomal transferase catalyses C-mannosylation of Trp-7, and that the minimal biosynthetic pathway can be defined as: Man –> –> GDP-Man –> Dol-P-Man –> (C2-Man-)Trp.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The key enzyme of chlorophyll biosynthesis in higher plants, NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.3.1.33), accumulates in its precursor form (pPORA) in barley. pPORA is bound to the chloroplasts and is able to interact with the enzyme's substrate, Pchlide, at both the cytosolic as well as the stromal side of the plastid envelope. The interaction with intraplastidic Pchlide, formed in ATP-containing chloroplasts upon feeding with -aminolevulinic acid, drives vectorial translocation of pPORA across the plastid envelope membranes. In contrast, exogenously applied Pchlide causes the release of the envelope-bound precursor protein to the cytosol. Both processes compete with each other if intra- and extraplastidic Pchlide are applied simultaneously. A cytosolic heat shock cognate protein of Mr 70,000 present in wheat germ and barley leaf protein extracts appears to prevent the release of the pPORA to the cytosol in vivo, however.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precursor systems of liquid crystalline phase were prepared using the surfactant PPG-5-Ceteth-20, isopropyl myristate, and water; gelatin microparticles containing propolis were then added into these systems. Homogeneity of dispersion, the in-system microparticle morphology, and sedimentation behavior of each formulation were evaluated. The rheological and mechanical properties (hardness, compressibility, and adhesiveness), the work of syringing, and the propolis release profile were also evaluated. All the formulations exhibited pseudoplastic flow and thixotropy, and they displayed storage modulus, loss modulus, dynamic viscosity, and loss tangent that depended on temperature, frequency, and composition. Mechanical properties varied significantly among the formulations being affected by changes in the composition and temperature. Raising the concentration of surfactant and adding propolis microparticles significantly decreased the work of syringing. The drug release was non-Fickian (anomalous) and there was no significant difference between the tested systems in the times required for 10%, 30%, and 50% release of the initial drug loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis is critically dependent on the presence of the ced-3 gene in Caenorhabditis elegans, which encodes a protein homologous to the mammalian interleukin (IL)-1 beta-converting enzyme (ICE). Overexpression of ICE or ced-3 promotes apoptosis. Cytotoxic T lymphocyte-mediated rapid apoptosis is induced by the proteases granzyme A and B. ICE and granzyme B share the rare substrate site of aspartic acid, after which amino acid cleavage of precursor IL-1 beta (pIL-1 beta) occurs. Here we show that granzyme A, but not granzyme B, converts pIL-1 beta to its 17-kD mature form. Major cleavage occurs at Arg120, four amino acids downstream of the authentic processing site, Asp116. IL-1 beta generated by granzyme A is biologically active. When pIL-1 beta processing is monitored in lipopolysaccharide-activated macrophage target cells attacked by cytotoxic T lymphocytes, intracellular conversion precedes lysis. Prior granzyme inactivation blocks this processing. We conclude that the apoptosis-inducing granzyme A and ICE share at least one downstream target substrate, i.e., pIL-1 beta. This suggests that lymphocytes, by means of their own converting enzyme, could initiate a local inflammatory response independent of the presence of ICE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosynthesis of active endothelin-1 (ET-1) implies an enzymatic processing of the inactive precursor Big ET-1 (1-39) into the mature, 21 amino acid peptide. The aim of this study was to characterize in airway and alveolar epithelial cells the enzymes responsible for this activation. BEAS-2B and A549 cells, which both produce ET-1, were studied in vitro as models for bronchiolar and alveolar cells, respectively. Both cell lines were able to convert exogenously added Big ET-1 (0.1 microM) into ET-1, suggesting a cell surface or an extracellular processing. The conversion was inhibited by phosphoramidon in both cell lines with an IC50 approximately 1 microM, but not by thiorphan, a specific inhibitor of neutral endopeptidase 24.11 (NEP). The endogenous production of serum-stimulated BEAS-2B and A549 cells was not inhibited by thiorphan, and phosphoramidon showed inhibition only at high concentration (>100 microM). Western blotting following electrophoresis in reducing conditions demonstrated a protein of MR 110 corresponding to the ECE-1 monomer in both BEAS-2B and A549 cells, as well as in whole lung extracts. By RT-PCR we revealed the mRNA encoding for the ECE-1b and/or -1c subtype, but not ECE-1a, in both cell lines. We conclude that BEAS-2B and A549 cells are able to process either endogenous or exogenous Big ET-1 by ECE-1 and that isoforms 1b and 1c could be involved in this processing with no significant role of NEP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn(2+) applied to the nickel column at 23 degrees C. The intensity of the binding of the enzyme to the Ni(2+) resin was directly proportional to the concentration of Mn(2+). Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni(2+), allowing the following to occur: (1) entrance of Mn(2+) and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 degrees C; and (3) an increase in the affinity of the enzyme to Ni(2+) after the Mn(2+) activation step. The conformational alterations can be summarized as follows: the interaction with the Ni(2+) simulates thermal heating in the artificial activation by opening a channel for Mn(2+) to enter. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dapsone use is frequently associated to hematological side effects such as methemoglobinemia and hemolytic anemia, which are related to N-hydroxylation mediated by the P450 enzyme system. The aim of the present study was to evaluate the influence of L-arginine supplementation, a precursor for the synthesis of nitric oxide, as single or multiple dose regimens on dapsone-induced methemoglobinemia. Male Wistar rats were treated with L-arginine at 5, 15, 30, 60 and 180 mg/kg doses (p.o., gavage) in single or multiple dose regimens 2 hours prior to dapsone administration (40 mg/kg, i.p.). The effect of the nitric oxide synthase inhibitor L-NAME was investigated by treatment with multiple doses of 30 mg/kg (p.o., gavage) 2 hours before dapsone administration. Blood samples were collected 2 hours after dapsone administration. Erythrocytic methemoglobin levels were assayed by spectrophotometry. The results showed that multiple dose supplementations with 5 and 15 mg/kg L-arginine reduced dapsone-induced methemoglobin levels. This effect is mediated by nitric oxide formation, since the reduction in methemoglobin levels by L-arginine is blocked by simultaneous administration with L-NAME, a nitric oxide synthase inhibitor.