982 resultados para environmental contaminants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The period of developmental vulnerability to toxicants begins at conception and extends through gestation, parturition, infanthood and childhood to adolescence. The concern is that children: (1) may experience quantitatively and qualitatively different exposures, and (2) may have different sensitivity to chemical pollutants. Traditional toxicological studies are inappropriate for assessing the results of chronic exposure at very low levels during critical periods of development. This paper will discuss (1) the health effects associated with exposure to selected emerging organic pollutants, including brominated flame retardants, perfluorinated compounds, organophosphate pesticides and bisphenol A; (2) difficulties in monitoring these substances in children, and (3) suggest techniques and strategies for overcoming these difficulties. Such biomonitoring data can be used to identify where policies should be directed in order to reduce exposure, and to document policies that have successfully reduced exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economical achievement of optimal growth in developing countries may lead to sustainable poverty reduction. Agricultural activities play an important role in economy and human being welfare, which leads to establishment of food security and quality. Aquaculture products in developing countries share 51.4 percent of total agricultural production.7—percent in developed countries. Therefore undoutedly food production by means of quality and quantity has to be increased .The history of shirmp production goes back to 500 years ago. Today 50 countries of the world produce shirmp .In Islamic Republic of Iran shrimp production started since 1992 in the coastal region of Persian Gulf. The shrimp culture farms canbe classified in to 4 different categories; Extensive, semi-extensive, intensive and super instensive. Global ecological manitenanc is one of the major concerns of authorities Human manipulation of nature is the most destructive activity. Industrial sweage leakage in to the rivers and water sources is a big issue that causes reduction in the aquatic population. Heavy metals have an inhibitory effect in the production and growth of sealife. Human intake of food treated with anti microbial cause's allergy, hypersensitivity and develops microbial resistance. Organochlorine compounds contamination may found in hepato pancreatic tissues of aquatic products, Aresnic may transfer to man via plant & animal product contamination. In 1991 during Persian Gulf Mir 700 oil well set

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse porte sur l’évaluation de l’impact de certains composés environnementaux sur la fécondité féminine, tel que mesuré par le délai de conception (« time to pregnancy » en anglais, ou TTP). Cette recherche a été réalisée dans le cadre de l’Étude mère-enfant sur les composés chimiques de l’environnement (MIREC), une cohorte de grossesse de 2001 femmes recrutées durant le premier trimestre dans dix villes canadiennes de 2008 à 2011. Les données des questionnaires et les échantillons biologiques ont servi à évaluer l’effet de deux groupes de composés : les persistants [composés perfluorés – perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA) et perfluorohexane sulfonate (PFHxS)] et les non persistants (bisphénol A, triclosan et phtalates). Cette thèse comprend également une analyse du potentiel du ratio index-annulaire (2D:4D) comme mesure de sensibilité endocrinienne. À ce jour, des mesures anthropométriques ont été collectées sur environ 800 mères-enfants dans le cadre de l’Étude mère-enfant sur les composés chimiques de l’environnement : biomonitoring et neurodéveloppement à la petite enfance (MIREC CD Plus), un suivi de la cohorte MIREC portant sur la croissance et le développement des enfants jusqu’à 5 ans. Sur l’ensemble, les résultats de cette thèse permettent d’étoffer les preuves concernant les effets adverses potentiels de plusieurs contaminants environnementaux sur la fécondité féminine, telle que mesurée par le TTP. Dans le premier article, nous avons montré une association entre les PFOA et les PFHxS et une baisse de fécondité, ce que d’autres recherches avaient déjà révélé. Dans le deuxième article, nous avons évalué l’effet du triclosan sur le TTP, ce qui n’avait jamais été examiné, pour montrer un délai plus élevé chez les femmes du quartile supérieur d’exposition. De plus, nos résultats sont en accord avec ceux de la seule étude ayant évalué l’effet du Bisphénol A sur la fécondité féminine, qui n’avait pas détecté d’effet. Finalement, nos données semblent indiquer une association entre l’exposition des femmes aux phtalates et un TTP plus court, mais ces résultats ne sont pas statistiquement significatifs. En ce qui a trait au potentiel du ratio index-annuaire (2D:4D) pour mesurer la sensibilité endocrinienne chez les femmes, nos données ne permettent pas d’établir une association entre ce ratio et le TTP. Pour ce qui est des enfants, nous n’avons pas trouvé d’effet adverse entre le tabagisme de la mère durant la grossesse et leur ratio 2D:4D. Par conséquent, nos données ne semblent pas justifier l’utilisation du ratio 2D:4D pour mesurer la sensibilité endocrinienne en lien avec le potentiel reproducteur (basé sur le TTP) ou l’exposition des enfants au tabac durant le premier trimestre de grossesse.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental estrogens are compounds which can mimic or interfere in the action of the female hormone estrogen and are found in food either as natural components of plant material (phytoestrogens) or as man-made chemicals (xenoestrogens) which enter food from environmental pollution or from storage procedures. This review discusses the source of these compounds, their molecular basis of action and their potential to impact on human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical method was developed for the simultaneous determination in poultry manure of 41 organic contaminants belonging to different chemical classes: pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and polybrominated diphenyl ethers. Poultry manure was extracted with a modified QuEChERS method, and the extracts were analyzed by isotope dilution GC/MS. Recovery of these contaminants from samples spiked at levels ranging from 25 to 100 ng/g was satisfactory for all the compounds. The developed procedure provided LODs from 0.8 to 9.6 ng/g. The analysis of poultry manure samples collected on different farms confirmed the presence of some of the studied contaminants. Pyrethroids and polycyclic aromatic hydrocarbons were the main contaminants detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.