262 resultados para entrapment
Resumo:
Australian dramatic literature of the 1950s and 1960s heralded a new wave in theatre and canonised a unique Australian identity on local and international stages. In previous decades, Australian theatre had been abound with the mythology of the wide brown land and the outback hero. This rural setting proved remote to audiences and sat uneasily within the conventions of the naturalist theatre. It was the suburban home that provided the back drop for this postwar evolution in Australian drama. While there were a number of factors that contributed to this watershed in Australian theatre, little has been written about how the spatial context may have influenced this movement. With the combined effects of postwar urbanization and shifting ideologies around domesticity, a new literary landscape had been created for playwrights to explore. Australian playwrights such as Dorothy Hewett, Ray Lawler and David Williamson transcended the outback hero by relocating him inside the postwar home. The Australian home of the 1960s slowly started subscribing to a new aesthetic of continuous living spaces and patios that extended from the exterior to the interior. These mass produced homes employed diluted spatial principles of houses designed by architects, Le Corbusier, Ludwig Mies Van der Rohe and Adolf Loos in the 1920s and 1930s. In writing about Adolf Loos’ architecture, Beatriz Colomina described the “house as a stage for the family theatre”. She also wrote that the inhabitants of Loos’ houses were “both actors and spectators of the family scene involved”. It has not been investigated as to whether this new capacity to spectate within the home was a catalyst for playwrights to reflect upon, and translate the domestic environment to the stage. Audiences were also accustomed to being spectators of domesticity and could relate to the representations of home in the theatre. Additionally, the domestic setting provided a space for gender discourse; a space in which contestations of masculine and feminine identities could be played out. This research investigates whether spectating within the domestic setting contributed to the revolution in Australian dramatic literature of the 1950s and 1960s. The concept of the spectator in domesticity is underpinned by the work of Beatriz Colomina and Mark Wigley. An understanding of how playwrights may have been influenced by spectatorship within the home is ascertained through interviews and biographical research. The paper explores playwrights’ own domestic experiences and those that have influenced the plays they wrote and endeavours to determine whether seeing into the home played a vital role in canonising the Australian identity on the stage.
Resumo:
Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.
Resumo:
A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
The synthesis of [Rh-2(COD)(2)(dppm)(mu(2)-Cl)] BF4 (1) (COD) 1,5-cyclooctadiene, dppm) bis(diphenylphosphino) methane) from simple precursors is reported. This is a rare example of a dirhodium complex with an open [Rh-2(mu(2)-dppm)(mu(2)-Cl)] core. The complex has been used to affect the hydrogenation of styrene and benzo[b] thiophene with total selectivity and competitive rates of reaction. The recycling of the catalyst has been achieved by the entrapment of 1 in silica by a sol-gel method to produce a recyclable solid catalyst.
Resumo:
Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.