1000 resultados para entrance region


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized Lévêque solution is presented for the conjugate fluid–fluid problem that arises in the thermal entrance region of laminar counterflow heat exchangers. The analysis, carried out for constant property fluids, assumes that the Prandtl and Peclet numbers are both large compared to unity, and neglects axial conduction both in the fluids and in the plate, assumed to be thermally thin. Under these conditions, the thermal entrance region admits an asymptotic self-similar description where the temperature varies as a power ϳ of the axial distance, with the particularity that the self-similarity exponent must be determined as an eigenvalue by solving a transcendental equation arising from the requirement of continuity of heat fluxes at the heat conducting wall. Specifically, the analysis reveals that j depends only on the lumped parameter ƙ = (A2/A1)1/3 (α1/α2)1/3(k2/k1), defined in terms of the ratios of the wall velocity gradients, A, thermal diffusivities, α i, and thermal conductivities,k i, of the fluids entering, 1, and exiting, 2, the heat exchanger. Moreover, it is shown that for large (small) values of K solution reduces to the classical first (second) Lévêque solution. Closed-form analytical expressions for the asymptotic temperature distributions and local heat-transfer rate in the thermal entrance region are given and compared with numerical results in the counterflow parallel-plate configuration, showing very good agreement in all cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In previous studies, it was shown that there is a gunshot-related transport of skin particles and microorganisms from the entrance region into the depth of the bullet path. The present study deals with the question of whether gunshots may also cause a retrograde transport of skin particles and microorganisms from the bullet exit region back into the bullet path. For this purpose, we used a composite model consisting of rectangular gelatin blocks and pig skin. The skin pieces were firmly attached to the gelatin blocks on the side where the bullet was to exit. Prior to the test shots, the outer surface of the pig skin was contaminated with a thin layer of a defined bacterial suspension. After drying the skin, test shots were fired from a distance of 10 m using cartridges calibre .38 spec. with different bullet types. Subsequent analyses showed that in all shots with full penetration of the composite model, the bullet path contained displaced skin particles and microorganisms from the skin surface at the exit site. These could be regularly detected in the distal 6-8 cm of the track, occasionally up to a distance of 18 cm from the exit hole. The distribution of skin particles and microorganisms is presented and the possible mechanism of this retrograde transport is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dielectrophoresis, the induced motion of polarisable particles in non-homogenous electric field, has been proven as a versatile mechanism to transport, immobilise, sort and characterise micro/nano scale particle in microfluidic platforms. The performance of dielectrophoretic (DEP) systems depend on two parameters: the configuration of microelectrodes designed to produce the DEP force and the operating strategies devised to employ this force in such processes. This work summarises the unique features of curved microelectrodes for the DEP manipulation of target particles in microfluidic systems. The curved microelectrodes demonstrate exceptional capabilities including (i) creating strong electric fields over a large portion of their structure, (ii) minimising electro-thermal vortices and undesired disturbances at their tips, (iii) covering the entire width of the microchannel influencing all passing particles, and (iv) providing a large trapping area at their entrance region, as evidenced by extensive numerical and experimental analyses. These microelectrodes have been successfully applied for a variety of engineering and biomedical applications including (i) sorting and trapping model polystyrene particles based on their dimensions, (ii) patterning carbon nanotubes to trap low-conductive particles, (iii) sorting live and dead cells based on their dielectric properties, (iv) real-time analysis of drug-induced cell death, and (v) interfacing tumour cells with environmental scanning electron microscopy to study their morphological properties. The DEP systems based on curved microelectrodes have a great potential to be integrated with the future lab-on-a-chip systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer blends constitute a valuable way to produce relatively low cost new materials. A still open question concerns the miscibility of polyethylene blends. Deviations from the log-additivity rule of the newtonian viscosity are often taken as a signature of immiscibility of the two components. The aim of this thesis is to characterize the rheological behavior in shear and elongation of five series of LLDPE/LDPE blends whose parent polymers have been chosen with different viscosity and SCB content and length. Synergistic effects have been measured for both zero shear viscosity and melt strength. Both SCB length and viscosity ratio between the components have been found to be key parameters for the miscibility of the pure polymers. In particular the miscibility increases with increasing SCB length and with decreasing the LDPE molecular weight and viscosity. This rheological behavior has significant effects on the processability window of these blends when the uni or biaxial elongational flows are involved. The film blowing is one of the processes for which the synergistic effects above mentioned can be crucial. Small scale experiments of film blowing performed for one of the series of blends has demonstrated that the positive deviation of the melt strength enlarges the processability window. In particular, the bubble stability was found to improve or disappear when the melt strength of the samples increased. The blending of LDPE and LLDPE can even reduce undesired melt flow instability phenomena widening, as a consequence, the processability window in extrusion. One of the series of blends has been characterized by means of capillary rheometry in order to allow a careful morphological analysis of the surface of the extruded polymer jets by means of Scanning Electron Microscopy (SEM) with the aim to detect the very early stages of the small scale melt instabilty at low shear rates (sharksin) and to follow its subsequent evolution as long as the shear rate was increased. With this experimental procedure it was possible to evaluate the shear rate ranges corresponding to different flow regions: smooth extrudate surface (absence of instability), sharkskin (small scale instability produced at the capillary exit), stick-slip transition (instability involving the whole capillary wall) and gross melt fracture (i.e. a large scale "upstream" instability originating from the entrance region of the capillary). A quantitative map was finally worked out using which an assessment of the flow type for a given shear rate and blend composition can be predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.