996 resultados para ensemble classification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented that achieves lung nodule detection by classification of nodule and non-nodule patterns. It is based on random forests which are ensemble learners that grow classification trees. Each tree produces a classification decision, and an integrated output is calculated. The performance of the developed method is compared against that of the support vector machine and the decision tree methods. Three experiments are performed using lung scans of 32 patients including thousands of images within which nodule locations are marked by expert radiologists. The classification errors and execution times are presented and discussed. The lowest classification error (2.4%) has been produced by the developed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, many scholars make use of fusion of filters to enhance the performance of spam filtering. In the past several years, a lot of effort has been devoted to different ensemble methods to achieve better performance. In reality, how to select appropriate ensemble methods towards spam filtering is an unsolved problem. In this paper, we investigate this problem through designing a framework to compare the performances among various ensemble methods. It is helpful for researchers to fight spam email more effectively in applied systems. The experimental results indicate that online based methods perform well on accuracy, while the off-line batch methods are evidently influenced by the size of data set. When a large data set is involved, the performance of off-line batch methods is not at par with online methods, and in the framework of online methods, the performance of parallel ensemble is better when using complex filters only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a triple-random ensemble learning method for handling multi-label classification problems. The proposed method integrates and develops the concepts of random subspace, bagging and random k-label sets ensemble learning methods to form an approach to classify multi-label data. It applies the random subspace method to feature space, label space as well as instance space. The devised subsets selection procedure is executed iteratively. Each multi-label classifier is trained using the randomly selected subsets. At the end of the iteration, optimal parameters are selected and the ensemble MLC classifiers are constructed. The proposed method is implemented and its performance compared against that of popular multi-label classification methods. The experimental results reveal that the proposed method outperforms the examined counterparts in most occasions when tested on six small to larger multi-label datasets from different domains. This demonstrates that the developed method possesses general applicability for various multi-label classification problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An automated lung nodule detection system can help spot lung abnormalities in CT lung images. Lung nodule detection can be achieved using template-based, segmentation-based, and classification-based methods. The existing systems that include a classification component in their structures have demonstrated better performances than their counterparts. Ensemble learners combine decisions of multiple classifiers to form an integrated output. To improve the performance of automated lung nodule detection, an ensemble classification aided by clustering (CAC) method is proposed. The method takes advantage of the random forest algorithm and offers a structure for a hybrid random forest based lung nodule classification aided by clustering. Several experiments are carried out involving the proposed method as well as two other existing methods. The parameters of the classifiers are varied to identify the best performing classifiers. The experiments are conducted using lung scans of 32 patients including 5721 images within which nodule locations are marked by expert radiologists. Overall, the best sensitivity of 98.33% and specificity of 97.11% have been recorded for proposed system. Also, a high receiver operating characteristic (ROC) Az of 0.9786 has been achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A system that could automatically extract abnormal lung regions may assist expert radiologists in verifying lung tissue abnormalities. This paper presents an automated lung nodule detection system consisting of five components: acquisition, pre-processing, background removal, detection, and false positives reduction. The system employs a combination of an ensemble classification and clustering methods. The performance of the developed system is compared against some existing counterparts. Based 011 the experimental results, the proposed system achieved a sensitivity of 100% and a false-positives/slice of 0.67 for 30 tested CT images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a novel analysis of the state of the art in object tracking with respect to diversity found in its main component, an ensemble classifier that is updated in an online manner. We employ established measures for diversity and performance from the rich literature on ensemble classification and online learning, and present a detailed evaluation of diversity and performance on benchmark sequences in order to gain an insight into how the tracking performance can be improved. © Springer-Verlag 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a dual-random ensemble multi-label classification method for classification of multi-label data. The method is formed by integrating and extending the concepts of feature subspace method and random k-label set ensemble multi-label classification method. Experiemental results show that the developed method outperforms the exisiting multi-lable classification methods on three different multi-lable datasets including the biological yeast and genbase datasets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.
Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.
Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences.